Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Imaging of HIV entry and egress

Anupriya Aggarwal A and Stuart G Turville A B
+ Author Affiliations
- Author Affiliations

A Laboratory of HIV Biology
Immunovirology and Pathogenesis Program
The Kirby Institute
University of New South Wales
NSW 2010, Australia

B Laboratory of HIV Biology
Immunovirology and Pathogenesis Program
The Kirby Institute
University of New South Wales
NSW 2010, Australia
Tel: +61 2 8382 4950
Fax: + 61 2 8382 4945
Email: sturville@kirby.unsw.edu.au

Microbiology Australia 35(2) 107-109 https://doi.org/10.1071/MA14035
Published: 15 May 2014

Abstract

During the early stages of HIV research, imaging of HIV was confined to the ultrastructural level1. These early images gave us glimpses of the viral life cycle from the early stages of entry, with HIV detection at the plasma membrane and within endocytic/vesicular compartments through to different sites of viral assembly/budding in CD4 T cells and macrophages15. Whilst these previous snapshots of fixed specimens were seminal in nature, the increasing use of fluorescent proteins (FP) and key advances in fluorescent microscope technologies now give us the tools to test hypotheses in not only live cells, but also with live virus that could also be tracked in real-time. Herein we review the advances in HIV tracking, with an emphasis on recent observations that link HIV to the cortical F-actin network during HIV egress.


References

[1]  Phillips, D.M. (1995) Images in clinical medicine. Human immunodeficiency virus. N. Engl. J. Med. 332, 233.
Images in clinical medicine. Human immunodeficiency virus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7gslelsQ%3D%3D&md5=8afd4cfc46c279b8af8a368fd643e3deCAS | 7808490PubMed |

[2]  Orenstein, J.M. et al. (1988) Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study. J. Virol. 62, 2578–2586.
| 1:STN:280:DyaL1c3nsFShsw%3D%3D&md5=9e7d2faead91503f7ee8371e7489ce51CAS | 3260631PubMed |

[3]  Filice, G. et al. (1987) Human immunodeficiency virus (HIV): an ultrastructural study. Microbiologica 10, 209–216.
| 1:STN:280:DyaL2s3ivVelsg%3D%3D&md5=0d55dd725e6d15c3cff43ba6c442b502CAS | 3647212PubMed |

[4]  Goto, T. et al. (1988) Entry of human immunodeficiency virus (HIV) into MT-2, human T cell leukemia virus carrier cell line. Arch. Virol. 102, 29–38.
Entry of human immunodeficiency virus (HIV) into MT-2, human T cell leukemia virus carrier cell line.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FmtFelug%3D%3D&md5=12728e8d5e063ab023fb7e37180f78d3CAS | 2904253PubMed |

[5]  Grigoriev, V.B. et al. (1992) Localization by immunogold labelling of HIV-1 structural proteins on Lowicryl embedded HIV-1 infected cell ultrathin sections. J. Submicrosc. Cytol. Pathol. 24, 163–167.
| 1:STN:280:DyaK383ovVyltw%3D%3D&md5=f27fd6df8f06240f94f040f33ce4e7e6CAS | 1600507PubMed |

[6]  McDonald, D. et al. (2002) Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452.
Visualization of the intracellular behavior of HIV in living cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslKmtrc%3D&md5=28d464dfceb57ee1e78f33f3f47a9c2dCAS | 12417576PubMed |

[7]  McDonald, D. et al. (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297.
Recruitment of HIV and its receptors to dendritic cell-T cell junctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGkt7o%3D&md5=2f2ae62339f4e8058da5c120b6ed0386CAS | 12730499PubMed |

[8]  Paxton, W. et al. (1993) Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J. Virol. 67, 7229–7237.
| 1:CAS:528:DyaK2cXkvFyrsA%3D%3D&md5=b8b63df612bf6cd0e122e5ef6cefb740CAS | 8230445PubMed |

[9]  Fassati, A. and Goff, S.P. (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol. 75, 3626–3635.
Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVSnu7Y%3D&md5=eab216611740bfa61e41afb32276050eCAS | 11264352PubMed |

[10]  Campbell, E.M. et al. (2007) Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology 360, 286–293.
Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Ojtrs%3D&md5=4a81a1017ae8e1454af96de6ccb6344fCAS | 17123568PubMed |

[11]  Pereira, C.F. et al. (2011) Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system. PLoS ONE 6, e17016.
Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFSmsrg%3D&md5=9f8e7e987e552d9be32cef795bedd3a6CAS | 21347302PubMed |

[12]  Arhel, N. et al. (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817–824.
Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVCmtLk%3D&md5=2737111dbf694860571a435d9a6c488bCAS | 16990814PubMed |

[13]  Muller, B. et al. (2004) Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J. Virol. 78, 10803–10813.
Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative.Crossref | GoogleScholarGoogle Scholar | 15367647PubMed |

[14]  Adams, S.R. et al. (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076.
New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Krsbs%3D&md5=0e58ee1a3810b8bd228bdd79c02f149fCAS | 12022841PubMed |

[15]  Turville, S.G. et al. (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat. Methods 5, 75–85.
Resolution of de novo HIV production and trafficking in immature dendritic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Srtg%3D%3D&md5=cbe289b4243d868ec1d78ceff6f46441CAS | 18059278PubMed |

[16]  Martin, B.R. et al. (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314.
Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhu7jL&md5=e59a063a832e04b3985077c81b55d0a4CAS | 16155565PubMed |

[17]  Gousset, K. et al. (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 4, e1000015.
Real-time visualization of HIV-1 GAG trafficking in infected macrophages.Crossref | GoogleScholarGoogle Scholar | 18369466PubMed |

[18]  Aggarwal, A. et al. (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 8, e1002762.
Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFSqs7c%3D&md5=fca557455c2e851463933323fda05774CAS | 22685410PubMed |

[19]  Hubner, W. et al. (2007) Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1. J. Virol. 81, 12 596–12 607.
Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKku73L&md5=9534b950a023c53cc76a3e1e4924abe3CAS |

[20]  Dale, B.M. et al. (2011) Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10, 551–562.
Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrsbbE&md5=184ab01402370265b0a927fda061234aCAS | 22177560PubMed |

[21]  Davis, D.A. et al. (2003) Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J. Virol. 77, 3319–3325.
Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVOgsrk%3D&md5=460153f7e7b5125f27741efd19935890CAS | 12584357PubMed |

[22]  Ladinsky, M.S. et al. (2014) Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLoS Pathog. 10, e1003899.
Electron tomography of HIV-1 infection in gut-associated lymphoid tissue.Crossref | GoogleScholarGoogle Scholar | 24497830PubMed |