In this issue

Microbiology Australia Microbiology Australia
Issue 3

Anaerobic Bacteria

Vertical Transmission

Constitutional reform was on the agenda again at the Annual General Meeting in Canberra, as it will be for the next several AGMs I think, as there is clear recognition from the membership that the Society is facing change. The roles of the Divisional chairs and State chairs and the nature of the general meeting were discussed in the light of overall structure. The Council is the principal decision-making body but because the Council only meets twice-yearly, interactions inside the Executive form the operational and strategic engine of ASM. T...

Anaerobic bacteria

In the beginning there was no oxygen. The anaerobes ruled the earth at that time and they continue to play an important role in our oxygenated world, in food microbiology, microbial ecology and bacterial pathogenesis. Welcome to this special issue of Microbiology Australia, which is dedicated to anaerobic microbes.

The complex factors that contribute to Clostridium difficile infection

Over the past decade Clostridium difficile has emerged as a serious public health issue, causing both hospital-based epidemics and community-associated disease. The most commonly recognised cause of antibiotic-associated diarrhoea in the human population, C. difficile was initially seen as a nuisance pathogen causing limited disease in the hospital setting. However, the emergence of ‘hypervirulent' strain types, associated with an increase in both morbidity and mortality, has made it a pathogen of great concern worldwide. I...

Clostridium difficile infection: an Australian clinical perspective

The scale of the problem now posed by Clostridium difficile infection (CDI) is becoming frighteningly clear. Since 2001, a dramatic increase in the incidence and severity of CDI has occurred, particularly, in North America, the United Kingdom and Europe, associated with the emergence of a fluoroquinolone-resistant clone known as restriction endonuclease type BI, pulsed field type NAP1 or PCR ribotype 027 (RT027) Clostridium difficile (CD)13. CD is now the most commonly identified nosocomial...

Predicting genome variations between passages of Clostridium difficle by ribotypes

Ribotyping is the most widely used method for differentiating strains of Clostridium difficile for epidemiological studies and infection control. Recently there have been calls for standardisation of the technique to which sophisticated technical solutions have been offered. This note offers a solution for standardisation based on conserved rrn operon Type-specific flanking genes. Furthermore, this technique can be used to detect Type-specific rrn operon deletions in passages from a single strain of C. difficile

Community-acquired Clostridium difficile infection and Australian food animals

Clostridium difficile is an anaerobic Gram positive spore-forming bacterium, the leading cause of infectious diarrhoea (C. difficile infection; CDI) in hospitalised humans. The assumption that CDI is primarily a hospital-acquired infection is being questioned. Community-acquired CDI (CA-CDI) is increasing1 particularly in groups previously considered at low risk2,3. In Australia, CA-CDI rates doubled during 2011 and increased by 24% between 2011 and 20124. Two potentially high...

Clostridium perfringens extracellular toxins and enzymes: 20 and counting

Clostridium perfringens is a Gram-positive, anaerobic bacterium that is widely distributed in the environment; it is found in soil and commonly inhabits the gastrointestinal tract of humans and animals1,2. The ubiquitous nature of this bacterium has resulted in it becoming a major cause of histotoxic and enteric diseases3. The success of C. perfringens as both a pathogen and a commensal bacterium lies in its ability to produce a large number of potent toxins and extracellular enzymes

Necrotic enteritis in chickens: an important disease caused by Clostridium perfringens

Clostridium perfringens, a spore-forming, Gram-positive, anaerobic bacterium, causes a variety of diseases throughout the animal kingdom. Each disease in each animal species tends to be caused by particular strains of C. perfringens and is defined by the tissue tropism and toxin profile of the bacteria. In chickens toxinotype A strains cause necrotic enteritis; a disease characterised by tissue damage to the proximal regions of the small intestine. In extreme cases the disease can be lethal but is more commonly seen as a sub-clini...

The manufacture of veterinary clostridial vaccines

Clostridial vaccines are commonly used in most countries where farming of cattle, sheep, goats and horses occurs on a commercial scale. Vaccines to protect against clostridial diseases make up the second largest group of ruminant vaccines sold globally. In Australia the sales value of these vaccines makes up $46m of the $96m sheep and cattle vaccine market (Baron market data). This group of vaccines has become so ubiquitous, and competition between competitors so fierce, that they have been reduced to the status of commodities where they can se...

Anaerobic spirochaetes and animals

Anaerobic spirochaetes colonise the large intestine of many avian and mammalian host species. The most well known pathogenic species is the strongly haemolytic Brachyspira hyodysenteriae that was first isolated from pigs with swine dysentery (SD) in the early 1970s. Classical SD is a severe mucohaemorrhagic colitis that occurs in growing pigs and is endemic in most pig-rearing areas of the world. The spirochaete acts in concert with other components of the colonic microbiota to disrupt the integrity of the colonic epithelium and induce i...

Anaerobic microorganisms and bioremediation of organohalide pollution

Organohalide pollution of subsurface environments is ubiquitous across all industrialised countries. Fortunately, strictly anaerobic microorganisms exist that have evolved using naturally occurring organohalides as their terminal electron acceptor. These unusual organisms are now being utilised to clean anthropogenic organohalide pollution.

Coupling anaerobic bacteria and microbial fuel cells as whole-cell environmental biosensors

Microorganisms have evolved to respond to environmental factors allowing adaption to changing conditions and minimisation of potential harm. Microbes have the ability to sense a wide range of biotic and abiotic factors including nutrient levels, analytes, temperature, contaminants, community quorum, and metabolic activity. Due to this ability, the use of whole-cell microbes as biosensors is attractive as it can provide real-time in situ information on biologically relevant factors through qualitative and quantitative outputs. Interesting...

Interesting anaerobes in the environment

Prokaryotes (Bacteria and Archaea) have a wide range of capacities to survive by generating energy in environments and situations lacking oxygen, which abound on Earth. Anaerobic metabolic strategies include anaerobic respiration (numerous types – e.g. nitrate reduction – Paracoccus denitrificans; sulfur respiration – Desulfuromonadales; methanogenesis – Methanosarsina spp.; iron reduction – Geobacter spp.; dehalorespiration – Dehalococcoides ethenogenes) and fermentation (su...

Report from ASM 2015: One Microbiology

Science meets Parliament 2015

Visit from Turkish Society of Microbiology

Vale Stephen Davis

Out of Africa: response to Ebola in the developed world; lessons for the future

Retraction notice to ‘Subversion of immunity by schistosomes’. [Microbiology Australia 2013, 34(3), 137–141. doi:10.1071/MA13046]

After due consideration, the editors of the journal and the authors of the paper agree that the paper be retracted from Microbiology Australia.
Reason: irresolvable authorship dispute.

PDF file Download Article

Volume 36 Number 3

PDF file Download Article

RSS Free subscription to our email Contents Alert. Or register for the free RSS feed.