Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Production of statins by fungal fermentation

Mishal Subhan A B , Rani Faryal B and Ian Macreadie B C
+ Author Affiliations
- Author Affiliations

A Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan

B School of Science, RMIT University, Bundoora, Vic. 3083, Australia

C Tel: +61 9925 6627, Email: ian.macreadie@rmit.edu.au

Microbiology Australia 38(2) 70-72 https://doi.org/10.1071/MA17031
Published: 30 March 2017

Abstract

Fungi are used industrially to obtain a variety of products, from low value bulk chemicals to high value drugs like, immunosuppressants, antibiotics, alkaloids and statins. Lovastatin and compactin are natural statins produced as secondary metabolites by predominantly Aspergillus and Penicillium species, following a polyketide pathway. Lovastatin was one of the first cholesterol-lowering drugs. Many statins are now chemically synthesised but lovastatin is still required to produce simvastatin. Apart from reducing blood cholesterol levels simvastatin causes pleotropic effects and has potential to treat various kinds of disorders including neurodegenerative disease and cancer.


References

[1]  Endo, A. (2004) The origin of the statins. Int. Congr. Ser. 1262, 3–8.
The origin of the statins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtr7L&md5=bab2903c25939f1c0e1ac29e8311ee2fCAS |

[2]  Istvan, E. (2003) Statin inhibition of HMG-CoA reductase: a 3-dimensional view. Atheroscler. Suppl. 4, 3–8.
Statin inhibition of HMG-CoA reductase: a 3-dimensional view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWiu7Y%3D&md5=3403421c51ef6162a13e34ed03461cc0CAS |

[3]  Subhan, M. et al. (2016) Exploitation of Aspergillus terreus for the production of natural statins. J Fungi 2, 1–13.
Exploitation of Aspergillus terreus for the production of natural statins.Crossref | GoogleScholarGoogle Scholar |

[4]  Tobert, J.A. (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2, 517–526.
Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Oru7k%3D&md5=86348d92ea5655dc56943a6d73d6de9dCAS |

[5]  Lorenz, R.T. and Parks, L. (1990) Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 34, 1660–1665.
Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1yrt7g%3D&md5=ac0fd2a932f8404184d613b62109b230CAS |

[6]  Cacho, R.A. et al. (2015) Understanding programming of fungal iterative polyketide synthases: the biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase. ý J. Am. Chem. Soc. 137, 15688–15691.
Understanding programming of fungal iterative polyketide synthases: the biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase. ýCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGnsL%2FL&md5=c764d6741c6d70f12babe3163bba1421CAS |

[7]  Xu, W. et al. (2013) LovG: The thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis. Angew. Chem. Int. Ed. 52, 6472–6475.
LovG: The thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ShsL0%3D&md5=59495dabbbf606e31b949e8813b93729CAS |

[8]  Shi, L. and Tu, B.P. (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33, 125–131.
Acetyl-CoA and the regulation of metabolism: mechanisms and consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1aqsrc%3D&md5=7fc6d5e16401589db2a92cf643cb8080CAS |

[9]  Chiang, Y.M. et al. (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Biotechnol. 86, 1719–1736.
Unraveling polyketide synthesis in members of the genus Aspergillus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVylt7k%3D&md5=9729efde67ec6c0397e59a5cebcc6af1CAS |

[10]  Campbell, C.D. and Vederas, J.C. (2010) Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 93, 755–763.
Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVajtLc%3D&md5=706103e761a25bcecbaf02b5223c31e0CAS |

[11]  Barrios-González, J. and Miranda, R.U. (2010) Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 85, 869–883.
Biotechnological production and applications of statins.Crossref | GoogleScholarGoogle Scholar |

[12]  Seenivasan, A. et al. (2008) Microbial production and biomedical applications of lovastatin. Indian J. Pharm. Sci. 70, 701–709.
Microbial production and biomedical applications of lovastatin.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3jsVKltQ%3D%3D&md5=f6617d9105b2ccf2ff9c487569701334CAS |

[13]  Thaper, R.K. et al. (1999) A cost-efficient synthesis of simvastatin via high-conversion methylation of an alkoxide ester enolate. Org. Process Res. Dev. 3, 476–479.
A cost-efficient synthesis of simvastatin via high-conversion methylation of an alkoxide ester enolate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1aitrw%3D&md5=5cbab4555bd155e1f0b8f63ed1594a00CAS |

[14]  Matsuoka, T. et al. (1989) Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus. Eur. J. Biochem. 184, 707–713.
Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFSjtQ%3D%3D&md5=aed48001aa833eafd0f7132e7eb3f02eCAS |

[15]  Park, J.W. et al. (2003) Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol. Lett. 25, 1827–1831.
Bioconversion of compactin into pravastatin by Streptomyces sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlajsL8%3D&md5=d181ec3209e91e60ea88189820f58631CAS |

[16]  McLean, K.J. et al. (2015) Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc. Natl. Acad. Sci. USA 112, 2847–2852.
Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivFWqu78%3D&md5=539f8091e3ab286ba204f61f82bb4b23CAS |

[17]  Singh, S.K. and Pandey, A. (2013) Emerging approaches in fermentative production of statins. Appl. Biochem. Biotechnol. 171, 927–938.
Emerging approaches in fermentative production of statins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WhsbzJ&md5=b355e6ef3fd6c9d0773bbc348e1a1d06CAS |

[18]  Kumar, M.S. et al. (2000) Repeated fed-batch process for improving lovastatin production. Process Biochem. 36, 363–368.
Repeated fed-batch process for improving lovastatin production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvF2nsLs%3D&md5=e8e122403ade7819fdd7c295caf349c1CAS |

[19]  García-Ruiz, C. et al. (2012) Statins and protein prenylation in cancer cell biology and therapy. Anticancer. Agents Med. Chem. 12, 303–315.
Statins and protein prenylation in cancer cell biology and therapy.Crossref | GoogleScholarGoogle Scholar |

[20]  Oesterle, A. et al. (2017) Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120, 229–243.
Pleiotropic effects of statins on the cardiovascular system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsFyltQ%3D%3D&md5=32ce28242278582b080d5adb345cf702CAS |

[21]  Erichsen, R. et al. (2011) Long-term statin use and the risk of gallstone disease: a population-based case-control study. Am. J. Epidemiol. 173, 162–170.
Long-term statin use and the risk of gallstone disease: a population-based case-control study.Crossref | GoogleScholarGoogle Scholar |

[22]  Reis, P.A. et al. (2017) Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain Behav. Immun. 60, 293–303.
Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVGqtbvJ&md5=93f5cc51282044f597291405d8b7b4cdCAS |

[23]  Wolozin, B. et al. (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med. 5, 20.
Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease.Crossref | GoogleScholarGoogle Scholar |