Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Therapeutics to prevent congenital cytomegalovirus during pregnancy: what is available now and in the future?

Stuart T Hamilton A B , Corina Hutterer C and Manfred Marschall C
+ Author Affiliations
- Author Affiliations

A Virology Division, SEALS Microbiology, Level 3, Clinical Sciences Building, Prince of Wales Hospital, Sydney, NSW 2031, Australia
Tel: +61 2 9382 9096
Email: stuart.hamilton@sesiahs.health.nsw.gov.au

B School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia

C Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Germany

Microbiology Australia 36(4) 156-161 https://doi.org/10.1071/MA15057
Published: 20 October 2015

Abstract

Human cytomegalovirus (CMV) is the leading non-genetic cause of fetal malformation in developed countries. Congenital CMV infection can cause serious clinical sequelae, and in severe cases result in fetal or neonatal death. Despite the clinical and social importance of congenital CMV there is currently no standardised management strategy to prevent or treat maternal/fetal CMV infection during pregnancy and no evidence-based therapeutic for prenatally diagnosed CMV infection or disease. For pregnant women with a primary CMV infection during pregnancy, standard medical practise remains to offer no treatment at all or the option to terminate pregnancy. If intervention is requested, pregnant women may be offered a narrow range of medical therapies with limited evidence for efficacy and some with high risks of toxicity. However, there are several experimental and novel anti-CMV therapeutics currently being investigated that may provide a safe and effective therapeutic for use during pregnancy to prevent both fetal infection and reduce the risk of congenital CMV disease developing in the fetus once infected in utero.


References

[1]  Biron, K.K. (2006) Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 71, 154–163.
Antiviral drugs for cytomegalovirus diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlGkt7o%3D&md5=22f7242ae769dc8f7726b007f8bbc13dCAS | 16765457PubMed |

[2]  Jacquemard, F. et al. (2007) Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG 114, 1113–1121.
Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtr7I&md5=49007b3d28e5fae58ff6aee9a4d13bb4CAS | 17617198PubMed |

[3]  Leruez-Ville, M. et al. (2015) In UTERO treatment of cytomegalovirus congenital infection with valacyclovir (CYMEVAL II) NCT01651585. J. Clin. Virol. 70, S6.
In UTERO treatment of cytomegalovirus congenital infection with valacyclovir (CYMEVAL II) NCT01651585.Crossref | GoogleScholarGoogle Scholar |

[4]  Hamilton, S.T. et al. (2014) Prevention of congenital cytomegalovirus complications by maternal and neonatal treatments: a systematic review. Rev. Med. Virol. 24, 420–433.
Prevention of congenital cytomegalovirus complications by maternal and neonatal treatments: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWnsrvF&md5=2bdf687575307ac7bb522f300fae234aCAS | 25316174PubMed |

[5]  Australian Government Department of Health, Therapeutic Goods Administration (2015) Prescribing medicines in pregnancy database. www.tga.gov.au/prescribing-medicines-pregnancy-database (accessed 23 September 2015).

[6]  Bravo, F.J. et al. (2006) Effect of maternal treatment with cyclic HPMPC in the guinea pig model of congenital cytomegalovirus infection. J. Infect. Dis. 193, 591–597.
Effect of maternal treatment with cyclic HPMPC in the guinea pig model of congenital cytomegalovirus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhsleqt7w%3D&md5=f3f6eb86454bd8f6a64608de293d6c75CAS | 16425139PubMed |

[7]  Schleiss, M.R. et al. (2006) Cyclic cidofovir (cHPMPC) prevents congenital cytomegalovirus infection in a guinea pig model. Virol. J. 3, 9.
Cyclic cidofovir (cHPMPC) prevents congenital cytomegalovirus infection in a guinea pig model.Crossref | GoogleScholarGoogle Scholar | 16509982PubMed |

[8]  Bravo, F.J. et al. (2011) Oral hexadecyloxypropyl-cidofovir therapy in pregnant guinea pigs improves outcome in the congenital model of cytomegalovirus infection. Antimicrob. Agents Chemother. 55, 35–41.
Oral hexadecyloxypropyl-cidofovir therapy in pregnant guinea pigs improves outcome in the congenital model of cytomegalovirus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehtb8%3D&md5=33d0c15837ba082f22b81035a2a1fbaaCAS | 21078944PubMed |

[9]  Marty, F.M. et al. (2013) CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N. Engl. J. Med. 369, 1227–1236.
CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGktLjL&md5=4321f2bee3ad0618162d6577fefa1045CAS | 24066743PubMed |

[10]  Wang, L.H. et al. (2003) Phase I safety and pharmacokinetic trials of 1263W94, a novel oral anti-human cytomegalovirus agent, in healthy and human immunodeficiency virus-infected subjects. Antimicrob. Agents Chemother. 47, 1334–1342.
Phase I safety and pharmacokinetic trials of 1263W94, a novel oral anti-human cytomegalovirus agent, in healthy and human immunodeficiency virus-infected subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVSmsr0%3D&md5=b496c2e4bda72d92fde876031a95b19fCAS | 12654667PubMed |

[11]  Winston, D.J. et al. (2008) Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter, randomized, double-blind, placebo-controlled, dose-ranging study. Blood 111, 5403–5410.
Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter, randomized, double-blind, placebo-controlled, dose-ranging study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFWnsLo%3D&md5=c692788c822ee048d90c10905fa7d641CAS | 18285548PubMed |

[12]  Marty, F.M. et al. (2011) Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect. Dis. 11, 284–292.
Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1aksrw%3D&md5=d6c41d3865449a414e138c712b72f089CAS | 21414843PubMed |

[13]  Winston, D.J. et al. (2012) Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, double-blind, multicenter controlled trial. Am. J. Transplant. 12, 3021–3030.
Efficacy and safety of maribavir dosed at 100 mg orally twice daily for the prevention of cytomegalovirus disease in liver transplant recipients: a randomized, double-blind, multicenter controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gurjE&md5=65b6420e87df4ed05ecd82b5b88ca0fbCAS | 22947426PubMed |

[14]  Avery, R.K. et al. (2010) Oral maribavir for treatment of refractory or resistant cytomegalovirus infections in transplant recipients. Transpl. Infect. Dis. 12, 489–496.
Oral maribavir for treatment of refractory or resistant cytomegalovirus infections in transplant recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sqtrg%3D&md5=92a8d8d06765eee1cfd69e7bceff2409CAS | 20682012PubMed |

[15]  Steingruber, M. et al. (2015) The interaction between cyclin B1 and cytomegalovirus protein kinase pUL97 is determined by an active kinase domain. Viruses 7, 4582–4601.
The interaction between cyclin B1 and cytomegalovirus protein kinase pUL97 is determined by an active kinase domain.Crossref | GoogleScholarGoogle Scholar | 26270673PubMed |

[16]  Marschall, M. et al. (2011) Regulatory roles of protein kinases in cytomegalovirus replication. Adv. Virus Res. 80, 69–101.
Regulatory roles of protein kinases in cytomegalovirus replication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajsL%2FK&md5=b64e9514f71b4aa8674e5aa6f130d0bfCAS | 21762822PubMed |

[17]  Stoelben, S. et al. (2014) Pre-emptive treatment of cytomegalovirus infection in kidney transplant recipients with letermovir: results of a phase 2a study. Transpl. Int. 27, 77–86.
Pre-emptive treatment of cytomegalovirus infection in kidney transplant recipients with letermovir: results of a phase 2a study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyrtLvP&md5=8917336584a2ac98a43f887de14a9247CAS | 24164420PubMed |

[18]  Goldner, T., Hempel, C. et al. (2014) Geno- and phenotypic characterization of human cytomegalovirus mutants selected in vitro after letermovir (AIC246) exposure. Antimicrob Agents Chemother. , .
| 24752278PubMed |

[19]  Adjuik, M. et al. (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363, 9–17.
Artesunate combinations for treatment of malaria: meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FisF2mtg%3D%3D&md5=32b59bef4265e30006f2fb0a6af67290CAS | 14723987PubMed |

[20]  Aweeka, F.T. and German, P.I. (2008) Clinical pharmacology of artemisinin-based combination therapies. Clin. Pharmacokinet. 47, 91–102.
Clinical pharmacology of artemisinin-based combination therapies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1ejt74%3D&md5=a563fd9da1e2de4296e82e25a14de3a5CAS | 18193915PubMed |

[21]  Ribeiro, I.R. and Olliaro, P. (1998) Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials. Medecine tropicale: revue du Corps de sante colonial 58, 50–53.
| 1:STN:280:DyaK1M3ivFelug%3D%3D&md5=d3137e1f0f3710cbfd8643f19e4457abCAS |

[22]  Clark, R.L. (2009) Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester. Reprod. Toxicol. 28, 285–296.
Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhsLzO&md5=bd71371c959f8c733b540b23ef37447bCAS | 19447170PubMed |

[23]  Efferth, T. et al. (2002) Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J. Mol. Med. 80, 233–242.
Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFGmsro%3D&md5=e797de70b82bb99690b94be1c61e05cbCAS | 11976732PubMed |

[24]  Cai, H. et al. (2014) In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of action. Antimicrob. Agents Chemother. 58, 986–994.
In vitro combination of anti-cytomegalovirus compounds acting through different targets: role of the slope parameter and insights into mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 24277030PubMed |

[25]  Flobinus, A. et al. (2014) Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives. J. Antimicrob. Chemother. 69, 34–40.
Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFegtrnP&md5=fbf459939273338cffa355247eb83504CAS | 24003183PubMed |

[26]  Chou, S. et al. (2011) The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res. 92, 364–368.
The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKku7jI&md5=2bedba33d903fd3a5f08a1ca1b65790aCAS | 21843554PubMed |

[27]  Efferth, T. et al. (2008) The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 47, 804–811.
| 1:CAS:528:DC%2BD1cXhtFyqurbN&md5=88282d0f218af7e48b2860faff856175CAS | 18699744PubMed |

[28]  Kaptein, S.J. et al. (2006) The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res. 69, 60–69.
The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2lsbw%3D&md5=2148951e941a45da8516e935fff68a99CAS | 16325931PubMed |

[29]  Germi, R. et al. (2014) Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus. Antiviral Res. 101, 57–61.
Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFylurrE&md5=6d158353a72197101943d86771eab006CAS | 24184983PubMed |

[30]  Shapira, M.Y. et al. (2008) Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin. Infect. Dis. 46, 1455–1457.
| 1:CAS:528:DC%2BD1cXlvVGnsr4%3D&md5=2b91e23c5a1594ac2ea3201a6eb96f89CAS | 18419454PubMed |

[31]  Lau, P.K. et al. (2011) Artesunate is ineffective in controlling valganciclovir-resistant cytomegalovirus infection. Clin. Infect. Dis. 52, 279.
| 21288859PubMed |

[32]  Wolf, D.G. et al. (2011) Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antiviral Res. 90, 183–186.
Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFSksbc%3D&md5=e1e367ec4b0bd96d6b673160ea7491daCAS | 21443904PubMed |

[33]  Morère, L. et al. (2015) Ex vivo model of congenital cytomegalovirus infection and new combination therapies. Placenta 36, 41–47.
Ex vivo model of congenital cytomegalovirus infection and new combination therapies.Crossref | GoogleScholarGoogle Scholar | 25479789PubMed |

[34]  Bork, P.M. et al. (1997) Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB. FEBS Lett. 402, 85–90.
Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXptlSitw%3D%3D&md5=b92b68a925f735436c82df3b0912a2ebCAS | 9013864PubMed |

[35]  Siedle, B. et al. (2004) Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J. Med. Chem. 47, 6042–6054.
Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Wis7o%3D&md5=f1de4407d7a0562194951f45519590c6CAS | 15537359PubMed |

[36]  Souza, M.C. et al. (2012) Artesunate exerts a direct effect on endothelial cell activation and NF-kappaB translocation in a mechanism independent of plasmodium killing. Malar. Res. Treat. 2012, 679090.
Artesunate exerts a direct effect on endothelial cell activation and NF-kappaB translocation in a mechanism independent of plasmodium killing.Crossref | GoogleScholarGoogle Scholar | 23097741PubMed |

[37]  Hutterer, C. et al. (2015) A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations. Antimicrob. Agents Chemother. 59, 2062–2071.
A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations.Crossref | GoogleScholarGoogle Scholar | 25624324PubMed |

[38]  Marschall, M. and Stamminger, T. (2009) Molecular targets for antiviral therapy of cytomegalovirus infections. Future Microbiol. 4, 731–742.
Molecular targets for antiviral therapy of cytomegalovirus infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslOksLo%3D&md5=c9c48e884f1b2210dd81298f9dcddc7cCAS | 19659428PubMed |

[39]  Lee, C.P. and Chen, M.R. (2010) Escape of herpesviruses from the nucleus. Rev. Med. Virol. 20, 214–230.
Escape of herpesviruses from the nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVegsL7J&md5=a094b0c74c84269e0db99bb28fc49e81CAS | 20069615PubMed |

[40]  Tandon, R. and Mocarski, E.S. (2012) Viral and host control of cytomegalovirus maturation. Trends Microbiol. 20, 392–401.
Viral and host control of cytomegalovirus maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Sqtrw%3D&md5=cf12e26b11fa609e116d0c4771d67d75CAS | 22633075PubMed |

[41]  Leigh, K.E. et al. (2015) Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication. Proc. Natl. Acad. Sci. USA 112, 9010–9015.
Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFajsr%2FF&md5=1481d0a0fa2d894c6f7bcb0e6b711569CAS | 26150520PubMed |

[42]  Muranyi, W. et al. (2002) Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297, 854–857.
Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvV2jsbY%3D&md5=e7dacff61c1582c3c8590304484b7795CAS | 12161659PubMed |

[43]  Hamirally, S. et al. (2009) Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 5, e1000275.
Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress.Crossref | GoogleScholarGoogle Scholar | 19165338PubMed |

[44]  Milbradt, J. et al. (2010) Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J. Biol. Chem. 285, 13 979–13 989.
Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFOgtLk%3D&md5=1ec21664da841b19828ffa08a5d2cb36CAS |

[45]  Leach, N.R. and Roller, R.J. (2010) Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology 406, 127–137.
Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gtbbJ&md5=89b8e849b72f2170eb3137b310e0d736CAS | 20674954PubMed |

[46]  Milbradt, J. et al. (2014) Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus. Mol. Cell. Proteomics 13, 2132–2146.
Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1CksL3N&md5=eb28a8eb7d7b73ebe4b2a2e6edaa3521CAS | 24969177PubMed |

[47]  Hamilton, S.T. et al. (2012) Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS One 7, e52899.
Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVSnsg%3D%3D&md5=c3f1ee2af9930cb0c81336a5232f2847CAS | 23300810PubMed |