Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

The complex factors that contribute to Clostridium difficile infection

Kate E Mackin A B and Dena Lyras A
+ Author Affiliations
- Author Affiliations

A Department of Microbiology Monash University, Clayton Vic. 3800, Australia

B Tel: +61 3 9902 9182 Email: kate.mackin@monash.edu

Microbiology Australia 36(3) 104-106 https://doi.org/10.1071/MA15036
Published: 7 August 2015

Abstract

Over the past decade Clostridium difficile has emerged as a serious public health issue, causing both hospital-based epidemics and community-associated disease. The most commonly recognised cause of antibiotic-associated diarrhoea in the human population, C. difficile was initially seen as a nuisance pathogen causing limited disease in the hospital setting. However, the emergence of ‘hypervirulent' strain types, associated with an increase in both morbidity and mortality, has made it a pathogen of great concern worldwide. Infection with C. difficile is also being increasingly documented in animals, with suggestions that animals destined for human consumption may provide a reservoir for disease. The use of antibiotics is considered the main risk factor for the development of human infection; however, many other factors such as strain type, patient age, and host immune response all contribute to disease caused by C. difficile.


References

[1]  Bartlett, J.G. et al. (1978) Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75, 778–782.
| 1:STN:280:DyaE1M%2FisFCnsQ%3D%3D&md5=8a22af83f47c91e3f40190c896ab18b2CAS | 700321PubMed |

[2]  George, R.H. et al. (1978) Identification of Clostridium difficile as a cause of pseudomembranous colitis. BMJ 1, 695.
Identification of Clostridium difficile as a cause of pseudomembranous colitis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c7isVynsQ%3D%3D&md5=eee759e78802213c96156b0159fd3537CAS | 630301PubMed |

[3]  Borriello, S.P. (1998) Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 41, 13–19.
Pathogenesis of Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlajsLo%3D&md5=59bba6c1f0e5aed3019f4384e2936691CAS | 9630370PubMed |

[4]  Heinlen, L. and Ballard, J.D. (2010) Clostridium difficile infection. Am. J. Med. Sci. 340, 247–252.
Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 20697257PubMed |

[5]  García-Lechuz, J.M. et al. (2001) Extra-intestinal infections caused by Clostridium difficile. Clin. Microbiol. Infect. 7, 453–457.
Extra-intestinal infections caused by Clostridium difficile.Crossref | GoogleScholarGoogle Scholar | 11591212PubMed |

[6]  Korman, T.M. (2015) Diagnosis and management of Clostridium difficile infection. Semin. Respir. Crit. Care Med. 36, 31–43.
Diagnosis and management of Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 25643269PubMed |

[7]  Kuijper, E.J. et al. (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 12, 2–18.
Emergence of Clostridium difficile-associated disease in North America and Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyhsLbN&md5=f78566ade542b5b6f707f46b3b1209bfCAS | 16965399PubMed |

[8]  Enoch, D.A. et al. (2011) Clostridium difficile in children: colonisation and disease. J. Infect. 63, 105–113.
Clostridium difficile in children: colonisation and disease.Crossref | GoogleScholarGoogle Scholar | 21664931PubMed |

[9]  King, A.M. et al. (2015) Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations. Future Microbiol. 10, 1–4.
Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlGksrY%3D&md5=b01d899ddb3edf12b377b9cc0b7bf7eaCAS | 25598331PubMed |

[10]  Voth, D.E. and Ballard, J.D. (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263.
Clostridium difficile toxins: mechanism of action and role in disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVymtLY%3D&md5=ca42a7712e39eccc7e46e32126983a8dCAS | 15831824PubMed |

[11]  Aktories, K. (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 9, 487–498.
Bacterial protein toxins that modify host regulatory GTPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWrsbg%3D&md5=1b9bf2637bbec977f0d6e2c92e61af12CAS | 21677684PubMed |

[12]  Awad, M.M. et al. (2015) Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes 5, 579–593.
Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen.Crossref | GoogleScholarGoogle Scholar |

[13]  Vedantam, G. et al. (2012) Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 3, 121–134.
Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response.Crossref | GoogleScholarGoogle Scholar | 22555464PubMed |

[14]  Sarker, M.R. and Paredes-Sabja, D. (2012) Molecular basis of early stages of Clostridium difficile infection: germination and colonization. Future Microbiol. 7, 933–943.
Molecular basis of early stages of Clostridium difficile infection: germination and colonization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Giur%2FM&md5=a330d12a838afdc04fffc9662736e5c2CAS | 22913353PubMed |

[15]  Sorg, J.A. and Sonenshein, A.L. (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512.
Bile salts and glycine as cogerminants for Clostridium difficile spores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVymu7c%3D&md5=56048318d7520dd078fbfd7067985cbcCAS | 18245298PubMed |

[16]  Carter, G.P. et al. (2015) Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio 6, e00551-e15.
Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections.Crossref | GoogleScholarGoogle Scholar |

[17]  Kuehne, S.A. et al. (2014) Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 209, 83–86.
Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFeqt7%2FO&md5=a9fa40c1595349391f957580f5dcc8e1CAS | 23935202PubMed |

[18]  Schwan, C. et al. (2014) Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc. Natl. Acad. Sci. USA 111, 2313–2318.
Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOgu74%3D&md5=83f6817db456dc360ffc6a04daae502fCAS | 24469807PubMed |

[19]  McDonald, L.C. et al. (2006) Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg. Infect. Dis. 12, 409–415.
Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003.Crossref | GoogleScholarGoogle Scholar | 16704777PubMed |

[20]  Reeves, A.E. et al. (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes 2, 145–158.
The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection.Crossref | GoogleScholarGoogle Scholar | 21804357PubMed |

[21]  Bignardi, G.E. (1998) Risk factors for Clostridium difficile infection. J. Hosp. Infect. 40, 1–15.
Risk factors for Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cvltVKqsw%3D%3D&md5=696b23e3549715619871aefa3c141502CAS | 9777516PubMed |

[22]  Owens, R.C. et al. (2008) Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 46, S19–S31.
Antimicrobial-associated risk factors for Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 18177218PubMed |

[23]  Drudy, D. et al. (2004) Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol. Med. Microbiol. 41, 237–242.
Human antibody response to surface layer proteins in Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVKksLs%3D&md5=ee65ed40621c58f8c7fff0e0e3db0ff9CAS | 15196573PubMed |

[24]  Pepin, J. et al. (2005) Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin. Infect. Dis. 40, 1591–1597.
Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCltLY%3D&md5=ed2561b72f88c1da904aa2f6a2d8f239CAS | 15889355PubMed |

[25]  Johnson, S. (2009) Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J. Infect. 58, 403–410.
Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes.Crossref | GoogleScholarGoogle Scholar | 19394704PubMed |

[26]  Surawicz, C.M. and Alexander, J. (2011) Treatment of refractory and recurrent Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 8, 330–339.
Treatment of refractory and recurrent Clostridium difficile infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVOrtrk%3D&md5=5e97832cfedb9839892a62a7d604727fCAS | 21502971PubMed |

[27]  Warny, M. et al. (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.
Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVartL3E&md5=58f6402d096be1447e5d0875ea212bbfCAS | 16182895PubMed |

[28]  Pépin, J. et al. (2005) Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173, 1037–1042.
Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec.Crossref | GoogleScholarGoogle Scholar | 16179431PubMed |

[29]  McDonald, L.C. et al. (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353, 2433–2441.
An epidemic, toxin gene-variant strain of Clostridium difficile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShurvP&md5=2187acc1eb45b7b5617d8cc278d2c8a8CAS | 16322603PubMed |

[30]  Richards, M. et al. (2011) Severe infection with Clostridium difficile PCR ribotype 027 acquired in Melbourne, Australia. Med. J. Aust. 194, 369–371.
| 21470090PubMed |

[31]  Goorhuis, A. et al. (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin. Infect. Dis. 47, 1162–1170.
Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGitb%2FF&md5=fa99770377d6557de89192e2bc2643a5CAS | 18808358PubMed |

[32]  Drudy, D. et al. (2007) Toxin A-negative, toxin B-positive Clostridium difficile. Int. J. Infect. Dis. 11, 5–10.
Toxin A-negative, toxin B-positive Clostridium difficile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVOgsLk%3D&md5=52eab5b67aa82adc6410d5139404ee85CAS | 16857405PubMed |

[33]  Mackin, K.E. et al. (2015) Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia. Anaerobe 34, 80–83.
Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVCht7Y%3D&md5=74e877d532966373122948391d2f6603CAS | 25944720PubMed |

[34]  Lim, S.K. et al. (2014) Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain. Clin. Infect. Dis. 58, 1723–1730.
Emergence of a ribotype 244 strain of Clostridium difficile associated with severe disease and related to the epidemic ribotype 027 strain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCgt7w%3D&md5=c819c9e6b5c95b08d0c1452d79cc5a5fCAS | 24704722PubMed |

[35]  He, M. et al. (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113.
Emergence and global spread of epidemic healthcare-associated Clostridium difficile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2lu7jE&md5=e19a32943aed675a0b4d802617f233c8CAS | 23222960PubMed |

[36]  Hensgens, M.P. et al. (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin. Microbiol. Infect. 18, 635–645.
Clostridium difficile infection in the community: a zoonotic disease?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOhtrzL&md5=6cd9b7636502e63ff5590048e2c3aaa4CAS | 22536816PubMed |

[37]  Kuntz, J.L. et al. (2011) Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study. BMC Infect. Dis. 11, 194.
Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study.Crossref | GoogleScholarGoogle Scholar | 21762504PubMed |

[38]  Rupnik, M. (2007) Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin. Microbiol. Infect. 13, 457–459.
Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2kt78%3D&md5=31b29d0b365ccdd9e96b665a32449483CAS | 17331126PubMed |