Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Enterovirus infection, β-cell apoptosis and type 1 diabetes

Sandhya Nair A B F , Ammira Akil A C G and Maria E Craig A B C D E H
+ Author Affiliations
- Author Affiliations

A Virology Research Laboratories, POWH and UNSW Research Laboratories, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney

B School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales

C School of Women’s and Children’s Health, University of New South Wales

D Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead

E Discipline of Paediatrics and Child Health, University of Sydney

F Tel: +61 2 9382 9242, Email: z3267450@student.unsw.edu.au

G Tel: +61 2 9382 9096, Email: ammira.akil@sesiahs.health.nsw.gov.au

H Tel: +61 2 9845 3907, Email: m.craig@unsw.edu.au

Microbiology Australia 34(3) 153-156 https://doi.org/10.1071/MA13051
Published: 4 September 2013

Abstract

Type 1 diabetes (T1D) results from a complex interplay between genetic and environmental factors, leading to chronic immune mediated destruction of pancreatic β-cells. The inflammatory process is initiated by one or more environmental triggers, such as a viral infection, stimulating release of autoantigens, inflammatory mediators including cytokines and chemokines, and death effectors, with resultant β-cell loss. While multiple enterovirus (EV) serotypes demonstrate β-cell tropism, most studies support a role for the coxsackievirus B (CVB) group in the pathogenesis of T1D. Experimental studies using animal models, insulin-producing cell lines and human islets indicate that the major mechanism of EV-induced β-cell destruction is apoptosis.


References

[1]  Craig, M.E. et al. (2003) Reduced frequency of HLA DRB1*03-DQB1*02 in children with type 1 diabetes associated with enterovirus RNA. J. Infect. Dis. 187, 1562–1570.
Reduced frequency of HLA DRB1*03-DQB1*02 in children with type 1 diabetes associated with enterovirus RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFeisb4%3D&md5=1bd25979e3c005c67b56ee9d6d6768c9CAS | 12721936PubMed |

[2]  Oikarinen, M. et al. (2012) Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 61, 687–691.
Type 1 diabetes is associated with enterovirus infection in gut mucosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFegur0%3D&md5=841a55e22be1de6fcbeed9b3c98efe0aCAS | 22315304PubMed |

[3]  Yeung, W.C. et al. (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342, d35.
Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies.Crossref | GoogleScholarGoogle Scholar | 21292721PubMed |

[4]  Dotta, F. et al. (2007) Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. Acad. Sci. USA 104, 5115–5120.
Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFChu7o%3D&md5=34dea8e9e23fbdddb1b7b3f48eed71f5CAS | 17360338PubMed |

[5]  Richardson, S.J. et al. (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52, 1143–1151.
The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Gqu70%3D&md5=3b3eb13cd0a283726fe3957a61f67c40CAS | 19266182PubMed |

[6]  Richardson, S.J. et al. (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56, 185–193.
Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgsrfO&md5=f642139b51fd12d20b90e8f536df21d3CAS | 23064357PubMed |

[7]  Champsaur, H.F. et al. (1982) Virologic, immunologic, and genetic factors in insulin-dependent diabetes mellitus. J. Pediatr. 100, 15–20.
Virologic, immunologic, and genetic factors in insulin-dependent diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387itF2qsg%3D%3D&md5=e5c03c88f3bdd55b7896a495cec09fc5CAS | 7035634PubMed |

[8]  Yoon, J.W. et al. (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 300, 1173–1179.
Isolation of a virus from the pancreas of a child with diabetic ketoacidosis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7ls1Ogsg%3D%3D&md5=d1bd22c2bc2fe50b52320498b75afea7CAS | 219345PubMed |

[9]  Nair, S. et al. (2010) Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J. Med. Virol. 82, 1950–1957.
Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12kt7jJ&md5=141173d26509b5211908c889cab6cb87CAS | 20872723PubMed |

[10]  Ylipaasto, P. et al. (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47, 225–239.
Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7gtValsg%3D%3D&md5=d6fb1c528f31136eb54ed66a7ecc42cbCAS | 14727023PubMed |

[11]  Roivainen, M. et al. (2002) Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 45, 693–702.
Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWktLw%3D&md5=5b9831b384c3397aa437d3103d0dd155CAS | 12107750PubMed |

[12]  Chehadeh, W. et al. (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in β cells. J. Virol. 74, 10153–10164.
Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in β cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFOltbo%3D&md5=0f2db6b4500fb8be1eeb6e7033a2dc3eCAS | 11024144PubMed |

[13]  Elshebani, A. et al. (2007) Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res. 124, 193–203.
Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Cjurk%3D&md5=81c64307dab215403ea813638d24ebc7CAS | 17169456PubMed |

[14]  He, J. and Haskins, K. (2008) Pathogenicity of T helper 2 T-cell clones from T-cell receptor transgenic non-obese diabetic mice is determined by tumour necrosis factor-alpha. Immunology 123, 108–117.
Pathogenicity of T helper 2 T-cell clones from T-cell receptor transgenic non-obese diabetic mice is determined by tumour necrosis factor-alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFWjtw%3D%3D&md5=1eb623b365600b7a160ade8fd93a0c64CAS | 17983440PubMed |

[15]  Mallone, R. and van Endert, P. (2008) T cells in the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 8, 101–106.
T cells in the pathogenesis of type 1 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1WgtrY%3D&md5=54e41f74aab522f24393ae0c60be2129CAS | 18445351PubMed |

[16]  Morran, M.P. et al. (2008) Innate and adaptive autoimmunity in type 1 diabetes. Pediatr. Diabetes 9, 152–161.
Innate and adaptive autoimmunity in type 1 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2hs77J&md5=40e1e4c3a79c25bd809177d55d1d213dCAS | 18221432PubMed |

[17]  Olsson, A. et al. (2005) Inflammatory gene expression in Coxsackievirus B-4-infected human islets of Langerhans. Biochem. Biophys. Res. Commun. 330, 571–576.
Inflammatory gene expression in Coxsackievirus B-4-infected human islets of Langerhans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Gku7c%3D&md5=180c02c9e76028f4d2718a3d7e60d50eCAS | 15796921PubMed |

[18]  Ylipaasto, P. et al. (2005) Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48, 1510–1522.
Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslyrtL4%3D&md5=83310efaa184be769fbf1d173c3424a7CAS | 15991020PubMed |

[19]  Kolb, H. and Mandrup-Poulsen, T. (2005) An immune origin of type 2 diabetes? Diabetologia 48, 1038–1050.
An immune origin of type 2 diabetes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1KmtL4%3D&md5=660687c1385b1488056d0173ba1afec2CAS | 15864529PubMed |

[20]  Donath, M.Y. et al. (2003) Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 81, 455–470.
Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2jtLw%3D&md5=51c718396dcb0ab67febf1c595e38dc9CAS | 12879149PubMed |

[21]  Xagorari, A. and Chlichlia, K. (2008) Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol. J. 2, 49–59.
Toll-like receptors and viruses: induction of innate antiviral immune responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Whu74%3D&md5=4309c20f16d4c237c4823e4a88d183eaCAS | 19088911PubMed |

[22]  Colli, M.L. et al. (2010) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum. Mol. Genet. 19, 135–146.
MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7vM&md5=1bf1e60f988909cdb0c7157807f3b689CAS | 19825843PubMed |

[23]  McKenzie, M.D. et al. (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57, 1284–1292.
Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKjtLg%3D&md5=95203537629dc1f52c9420f4eaf8bb9cCAS | 18252892PubMed |

[24]  Luo, H. et al. (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J. Virol. 76, 3365–3373.
Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Kjsro%3D&md5=9c8032138362dda49c9fe4f0f4c14f56CAS | 11884562PubMed |

[25]  Cunningham, K.A. et al. (2003) Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Res. 92, 179–186.
Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12rtL4%3D&md5=95a30c4a5de1a8f5aa565e0640eaa62cCAS | 12686427PubMed |

[26]  Opavsky, M.A. et al. (2002) Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J. Clin. Invest. 109, 1561–1569.
Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12ltLc%3D&md5=ae1daf38e3fcf56e7e5cecaf5d5a6ffeCAS | 12070303PubMed |

[27]  Tung, W.H. et al. (2010) EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-κB in rat brain astrocytes. J. Cell. Physiol. 224, 376–386.
EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-κB in rat brain astrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslWitb4%3D&md5=b72439e0e5553309f82e986b816cef47CAS | 20333648PubMed |

[28]  Colli, M.L. et al. (2011) Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance. PLoS Pathog. 7, e1002267.
Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtleis7zJ&md5=3b4c1f275cf96bc6f1abfc60917cb74bCAS | 21977009PubMed |

[29]  García, M. et al. (2009) Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells. Biochim. Biophys. Acta 1793, 1768–1775.
Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells.Crossref | GoogleScholarGoogle Scholar | 19747951PubMed |

[30]  Craig, M.E. et al. (2013) Viruses and type 1 diabetes: a new look at an old story. Pediatr. Diabetes 14, 149–158.
| 1:CAS:528:DC%2BC3sXhtVWms7rM&md5=457b8d4072d28bc3023137f859b48187CAS | 23517503PubMed |