Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Measles and SSPE: occurrence and pathogenesis

Jude Jayamaha
+ Author Affiliations
- Author Affiliations

Department of Virology
Medical Research Institute
PO Box 527
Colombo 008, Sri Lanka
Email: jayamahacar@gmail.com

Microbiology Australia 34(3) 132-134 https://doi.org/10.1071/MA13044
Published: 4 September 2013

Abstract

Measles is an acute febrile exanthematous condition that is usually a self-limiting disease, but it can be associated with several complications, one of which is subacute sclerosing panencephalitis (SSPE). It is a rare delayed complication of measles due to persistence of the virus in the central nervous system. All of the genetic analyses of viral material derived from brain tissue of SSPE patients have revealed sequences of wild-type measles virus (MV). There is no evidence that measles vaccine can cause SSPE. Several mutations have been described in genes coding for proteins in SSPE strains of MV. Several host cell modifications, mechanisms of virus reactivation and immunopathology in pathogenesis of SSPE have been explained recently, broadening the understanding of this fatal disease.


References

[1]  Duke, T. and Mgone, C.S. (2003) Measles: not just another viral exanthem. Lancet 361, 763–773.
Measles: not just another viral exanthem.Crossref | GoogleScholarGoogle Scholar | 12620751PubMed |

[2]  Johnson, R.T. et al. (1984) Measles encephalomyelitis—clinical and immunologic studies. N. Engl. J. Med. 310, 137–141.
Measles encephalomyelitis—clinical and immunologic studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2FptlCnsg%3D%3D&md5=ee62c2f3327f30457072c4913ede306dCAS | 6197651PubMed |

[3]  World Health Organization (2013) WHO vaccine-preventable diseases: monitoring system. 2013 global summary. http://apps.who.int/immunization_monitoring/globalsummary/countries?countrycriteria[country]=AUS (accessed 14 July 2013).

[4]  Campbell, H. et al. (2007) Review of the effect of measles vaccination on the epidemiology of SSPE. Int. J. Epidemiol. 36, 1334–1348.
Review of the effect of measles vaccination on the epidemiology of SSPE.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjitFyiuw%3D%3D&md5=d06d5036dfdd18ff47b7fa282dad3356CAS | 18037676PubMed |

[5]  http://www.disabled-world.com/disability/types/sspe.php (accessed 24 May 2013).

[6]  Hanna, J. and Messer, R. Subacute sclerosing panencephalitis. Australian Paediatric Surveillance Unit. http://www.apsu.org.au/assets/past-studies/sspe.pdf (accessed 30 July 2013).

[7]  Moss, W.J. and Griffin, D.E. (2012) Measles. Lancet 379, 153–164.
Measles.Crossref | GoogleScholarGoogle Scholar | 21855993PubMed |

[8]  Hosoya, M. and Shigeta, S. (2001) High-dose intravenous ribavirin therapy for subacute sclerosing panencephalitis. Antimicrob. Agents Chemother. 45, 943–945.
High-dose intravenous ribavirin therapy for subacute sclerosing panencephalitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFWgu7c%3D&md5=1337c41cf48a88f6ad3d10852ea8180aCAS | 11181386PubMed |

[9]  Patterson, J.B. et al. (2001) Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291, 215–225.
Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1ylug%3D%3D&md5=aca2eb5a3a1ead6ed67545390e4ccd23CAS | 11878891PubMed |

[10]  Cattaneo, R. and Rose, J.K. (1993) Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J. Virol. 67, 1493–1502.
| 1:CAS:528:DyaK3sXitFSnurY%3D&md5=b908f1e60a897e906aa0c09185289b7cCAS | 8437226PubMed |

[11]  Duclos, P. and Ward, B.J. (1998) Measles vaccines: a review of adverse events. Drug Saf. 19, 435–454.
Measles vaccines: a review of adverse events.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FpsVKqtQ%3D%3D&md5=ac1058d344b7b10108ec773b4b143abcCAS | 9880088PubMed |

[12]  Bolt, G. et al. (2002) Measles virus-induced modulation of host cell gene expression. J. Gen. Virol. 83, 1157–1165.
| 1:CAS:528:DC%2BD38XjsFWmsb8%3D&md5=415f614d92ee34c7b211acb1bad55a63CAS | 11961271PubMed |

[13]  Honda, T. et al. (2013) Pathogenesis of encephalitis caused by persistent measles virus infection. In Encephalitis (Tkachev, S., ed.), pp. 251–262, InTech. http://www.intechopen.com/books/encephalitis/pathogenesis-of-encephalitis-caused-by-persistent-measles-virus-infection (accessed 12 August 2013). 10.5772/54434

[14]  Robinzon, S. et al. (2009) Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. J. Virol. 83, 5495–5504.
Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGksr4%3D&md5=6e595532a40ead7e2d41a024d4116214CAS | 19297498PubMed |

[15]  Watanabe, A. et al. (2011) Peroxiredoxin 1 is required for efficient transcription and replication of measles virus. J. Virol. 85, 2247–2253.
Peroxiredoxin 1 is required for efficient transcription and replication of measles virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWlt7fE&md5=4cce00bf563b12a8ac66647df3b17820CAS | 21159870PubMed |

[16]  Ayata, M. et al. (2010) The F gene of the Osaka-2 strain of measles virus derived from a case of subacute sclerosing panencephalitis is a major determinant of neurovirulence. J. Virol. 84, 11189–11199.
The F gene of the Osaka-2 strain of measles virus derived from a case of subacute sclerosing panencephalitis is a major determinant of neurovirulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeisb7P&md5=ba9a3c4ea6f465a510f911f5b5a59c43CAS | 20719945PubMed |

[17]  Wucherpfennig, K.W. and Strominger, J.L. (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705.
Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVahs74%3D&md5=0c78c1607d1b0caade525608bc1180a6CAS | 7534214PubMed |

[18]  Jahnke, U. et al. (1985) Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 229, 282–284.
Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvVCktb4%3D&md5=e8cd97324e9bc10c33dcdf7e34cc3a18CAS | 2409602PubMed |

[19]  Brocke, S. et al. (1994) Infection and multiple sclerosis: a possible role for superantigens? Trends Microbiol. 2, 250–254.
Infection and multiple sclerosis: a possible role for superantigens?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2czmtlWhsA%3D%3D&md5=4659ba805fed98fa4d1797c2dd02e31cCAS | 8081652PubMed |