Enlisting plants in the battle for new antibacterial compounds

Dane Lyddiard
Biomedical Science
School of Science and Technology
University of New England
Armidale, NSW 2351, Australia
Tel: +61 2 6773 4050
Fax: +61 2 6773 3267
Email: dlyddia2@une.edu.au

Ben W Greatrex
Pharmacy
School of Rural Medicine
University of New England
Armidale, NSW 2351, Australia
Tel: +61 2 6773 2402
Fax: +61 2 6773 3267
Email: ben.greatrex@une.edu.au

A rise in antibacterial drug resistance comes at a time when our once reliable sources of antibacterial natural products, bacteria and fungi, are failing us. The search for new drugs to fight pathogens has led to a range of innovative approaches and includes screening organisms which have developed evolutionary adaptions to prevent bacterial attack. The discovery of antibacterial phytochemicals from plants can be achieved using an activity-guided platform involving biological and chemical pre-screening, compound isolation, structure elucidation, and the direct testing of isolated compounds. Challenges include the clean isolation of natural products, avoiding the rediscovery of known compounds, toxicity, and poor levels of activity.

For a good part of the 20th century, humans had the upper hand against bacterial pathogens thanks to the pioneering work of Alexander Fleming, René Dubos and Selman Waksman et al. who demonstrated the value of mining antibacterial natural products from bacteria and fungi. For a few decades this approach (which yielded the likes of penicillin, streptomycin and tetracycline) seemed to be an impenetrable fortress against bacterial pathogens, until the walls began to strain under the force of growing antimicrobial resistance and a dearth of new antibiotic classes. The ‘old’ approach eventually failed to produce significantly new clinical agents against the background of known compounds. Researchers have responded in a range of novel ways: running large compound libraries through high throughput screenings, mining the natural products in previously unculturable organisms, screening the chemicals hidden away on the shelves of chemistry labs, disarming bacteria of their virulence factors, and developing phage therapies; each approach with its merits and limitations. Another approach is screening botanical natural products.

The plant world as a whole is estimated to produce over 100 000 secondary metabolites with low molecular mass, generally derived from isoprenoid, phenylpropanoid, alkaloid and fatty acid or polyketide pathways. While plants and animals have some common antibacterial defences such as apoptosis of infected tissue, antibacterial peptides (purothionins from Triticum aestivum are a noteworthy plant-based example) and the targeted exploitation of reactive oxygen species, they do not produce antibodies, relying instead on a limited number of receptors to recognize pathogens along with a diverse armoury of small molecules with antibacterial activity. Compounds with known specific antibacterial targets are not common in plants, although there are examples such as coumarins with comparable action to the DNA-gyrase inhibitor novobiocin. While activity is usually weak, it is possible that plants target virulence rather than growth or that relatively weak antibacterial agents work in synergy with each other to create potent activity as seen with the antibacterial compound berberine from Berberis fremontii together with the multi drug resistance (MDR) pump inhibitor 5′-methoxyhydnocarpin.

Important phytochemical groups include phenolics and polyphenols, quinones, coumarins, flavonoids, terpenoids and alkaloids. Phenolics and polyphenols include the simple phenols, phenolic acids and tannins. Antibacterial examples are found in the tea plant Camellia sinensis and include gallic acid, a phenolic acid which disrupts cell membranes, and the tannin tannic acid which reduces Staphylococcus aureus biofilm formation. A representative of the quinones is juglone found in the black walnut tree Juglans nigra, while the tannin tannic acid which reduces Staphylococcus aureus biofilm formation. A representative of the quinones is juglone found in the black walnut tree Juglans nigra, while the tannin tannic acid which reduces Staphylococcus aureus biofilm formation.

Flavonoids include myricetin, found in the sweet potato plant Ipomoea batatas and which appears to affect protein synthesis.
Terpenoids are common phytochemicals based on the isoprene structure and include terpinen-4-ol, an antibacterial terpene found abundantly in *Melaleuca alternifolia* tea tree oil, which evidence suggests leads to damage to the cell membrane and loss of cytoplasmic material. Alkaloids are another common phytochemical group and include berberine (previously discussed) found in *Coptis chinensis* and *Berberis fremontii*. The mode of action of berberine may be through binding with double helical DNA and/or the inhibition of the bacterial division protein FtsZ.

There are many ways to decipher a plant’s defences to find these antibacterial small molecules and these are accessible to a microbiologist who has support from a multidisciplinary team that includes a chemist and botanist. A simple schema developed in our lab is shown in Figure 2 and involves plant collection, secondary metabolites extraction by soaking dried (or fresh) plant material in a solvent (e.g., methanol) for around 24 h. The extract is filtered and solvent evaporated.

Collecting and extracting

Plants are collected and secondary metabolites extracted by soaking dried (or fresh) plant material in a solvent (e.g., methanol) for around 24 h. The extract is filtered and solvent evaporated.

Antibacterial pre-screening

Extract is applied to blank disks for a disk diffusion assay on a range of target organisms.

Dereplication

GCMS analysis assists in identifying if an extract is rich in known volatile antimicrobial compounds by matching spectra and retention times against databases.

TLC bioautography

Extract is separated into components using a thin layer chromatography (TLC) plate and overlayed with bacteria-seeded media to identify active components.

Isolation

Flash chromatography is a relatively simple and accessible method for compound isolation, although prep-HPLC provides better separation. To ensure the correct fractions are further purified and characterised, they are re-tested using TLC bioautography.

Minimum inhibition concentrations

Run on isolated compounds, MICs can be undertaken by adapting the CLSI methods. Generally, starting concentrations need to be relatively low and DMSO is often included to improve solubility during assays.

Characterisation of new compounds generally requires specialist knowledge and tools from a chemist and includes the use of NMR and/or crystallography. Further studies on highly active novel compounds may include mechanism of action and cytotoxicity assays.

Post isolation

Characterisation of new compounds generally requires specialist knowledge and tools from a chemist and includes the use of NMR and/or crystallography. Further studies on highly active novel compounds may include mechanism of action and cytotoxicity assays.
metabolite extraction, antimicrobial disk diffusion screen (adapted from the EUCAST25 method), GC-MS analysis coupled with databases (e.g. NIST Mass Spectral Libraries) for dereplication, TLC bioautography24,25, compound isolation by flash chromatography (or prep-HPLC) guided by testing fractions by TLC bioautography, elucidating new compound structures by NMR and/or crystallography and undertaking MICs on isolated compounds (adapting the CLSI methods26). Additionally, screening phytochemicals against specific virulence factors could uncover a trove of treasures, but there are diverse targets5 and each target requires a suitable assay: ultimately lots of work which may result in few if any hits. Inclusion in a compound library for high throughput screening is a possible solution. If good activity is seen during crude extract screening but is poor in the isolated compounds, combinations of compounds suspected to potentiate each other can be tested in a checkerboard assay27.

While the potential of antimicrobial phytochemicals is clear, there is a dearth of examples that have made it into the clinic. Many reasons for this exist including the differences in human and plant biology and physiology giving rise to toxicity concerns. An isolated compound with promising MIC activity needs to demonstrate low toxicity with preliminary tests such as \textit{in vitro} cytotoxicity assays28 presenting a hurdle. Other factors for the lack of plant-based antibacterial agents include plants making diverse antimicrobial compounds but each with relatively poor activity9, and their production of a range of structurally similar compounds making isolation difficult and resource intensive. Compounding these problems, often the researcher spends time and resources to simply discover a known compound.

Attacking drug resistant bacteria from multiple fronts gives us the best chance for success. Screening phytochemicals as one of those approaches makes sense given the reliance of flora on secondary metabolites for antibacterial protection, and the incredible diversity of structures present across an enormous number of plant species. While plants have thus far generated few clinical candidates, successes in other anti-infective classes such as that of the antimalarial drug artemisinin from \textit{Artemisia annua}29 allow for optimism. In Australia, only a limited number of researchers have looked at our unique flora as a potential solution and research has tended to focus on a limited number of genera, notably, \textit{Acacia}, \textit{Melaleuca}, \textit{Eucalyptus} and \textit{Eremophila}, leaving most species still to be screened.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

Our research has been supported by an Australian Government Research Training Program (RTP) Scholarship.

References

Corynebacterium and Dolosigranulum: future probiotic candidates for upper respiratory tract infections

Rachael Lappan
The Marshall Centre for Infectious Diseases Research and Training
School of Biomedical Sciences
The University of Western Australia
Perth, WA, Australia
Westfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute
The University of Western Australia
Perth, WA, Australia
Present address: The School of Biological Sciences, 18 Innovation Walk
Monash University
Clayton, Vic. 3800, Australia
Tel: +61 3 9905 5794
Email: Rachael.Lappan@monash.edu

Christopher S Peacock
The Marshall Centre for Infectious Diseases Research and Training
School of Biomedical Sciences
The University of Western Australia
Perth, WA, Australia
Telethon Kids Institute
The University of Western Australia
Perth, WA, Australia
Tel: +61 8 6457 6172
Email: Christopher.Peacock@uwa.edu.au

The presence of the bacterial genera *Corynebacterium* and *Dolosigranulum* has consistently been associated with a healthy upper respiratory tract (URT). Commonly occurring together in the nasopharynx of healthy children, the role of these commensal organisms in nasopharyngeal health is unknown, as few studies have sought to determine whether they actively contribute to maintaining a healthy state. We recently identified *Corynebacterium pseudodiphtheriticum* and *Dolosigranulum pigrum* as the major nasopharyngeal species associated with resistance to recurrent ear infections, via 16S rRNA gene sequencing and metagenomics. Using *in vitro* bacterial interference assays, we observed a reduction in the growth of *Moraxella catarrhalis* – one of the three major otopathogens – in the presence of *C. pseudodiphtheriticum*. Further *in vitro* and *in vivo* studies of the interactions between commensal *C. pseudodiphtheriticum* and *D. pigrum* strains, URT pathogens, and the human host will help to clarify their role in...