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Many well-known mosquito-borne viruses such as dengue,

Zika, West Nile, chikungunya and Ross River viruses can be

transmittedtovertebratesandareassociatedwithdisease in

man or animals. However, the use of deep sequencing and

other open-minded approaches to detect viruses in mos-

quitoes have uncovered many new RNA viruses, most of

which do not infect vertebrates. The discovery of these

‘insect-specific’ viruses (ISVs) has redefined the mosquito

virome and prompted the lines of viral taxonomic classifi-

cation to be redrawn1,2. Despite their benign phenotype,

ISVs have become a hot topic of research, with recent

studies indicating they have significant application for

biotechnology.

The main focus of our lab is the study of new and emerging

mosquito-borne viruses. For most of the past decade we and our

collaborators have developed a comprehensive system for high

throughput virus detection and isolation from mosquito and ver-

tebrate samples. This has enabled the discovery of many new

viruses and detection of known viruses occurring in new ecological

or pathological contexts. We have also focussed on the develop-

ment of novel research tools and reagents to characterise these

viruses both in vitro and in vivo.

To conduct investigations into the biodiversity of viruses in

Australian mosquito populations, we have had access to extensive

archival collections of mosquito pools collected from different

parts of Australia over several decades. These collections were part

of previous targeted research projects or routine surveillance

operations and were pivotal to the success of our virus discovery

program. Another key to our success was the development of

a sequence-independent system to detect and isolate new and

known viruses in a high throughput manner. This was based on

a novel set of monoclonal antibodies we generated specific to

double-stranded RNA (dsRNA), which have the crucial ability to

recognise the replicative dsRNA intermediates produced by most

RNA viruses during growth in cell culture. These antibodies, also

known as ‘MAVRIC’ (monoclonal antibodies to viral replicative

intermediates in cells), are used in ELISA to detect viral replication

in C6/36 mosquito cells in 96-well plates inoculated with mosquito

samples3. This allows us to target the MAVRIC-positive cultures

for viral isolation and amplification by generic viral RT-PCRs or

deep sequencing to identify the viral agent.

To date, the work of several postdocs as well as PhD and honours

students in the lab has resulted in the detection, isolation and

characterisation of more than 20 new arthropod-borne viruses.

These new viruses represent at least nine viral taxa, including

flaviviruses, bunyaviruses, mesoniviruses, negeviruses, reoviruses,

iflaviruses, nodaviruses, birnaviruses and totiviruses4–12. It is inter-

esting tonote thatonlyoneof thenewlydiscoveredviruseswas able

to infect vertebrate cells, albeit in a highly restricted fashion4. The

high yield of these new insect-specific viruses in our studies likely

reflects the fact that previous approaches for virus discovery and

surveillance have relied on the use of vertebrate systems (mice or

cell lines) for thedetectionand isolationofmosquito-borneviruses.

Whilst this was effective in the discovery of many true arboviruses

that cycle between mosquitoes and vertebrates, such methods

preclude the detection of insect-specific viruses.

Most of our efforts to characterise these new viruses have focussed

on the insect-specific flaviviruses (ISFs). While ISFs share the same

genome structure and basic replication strategy as flavivirus patho-

gens such as West Nile (WNV), Zika (ZIKV) and dengue (DENV)
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viruses, they do not infect or replicate in vertebrates (Figure 1a, b).

Phylogenetic analysis of ISFs also group them into two distinct

genetic clusters – referred to as Lineage I ISFs and Lineage II ISFs

(reviewed in1 – see Figure 1c). The Lineage I ISFs are the most

genetically divergent and are thought to represent the ancestors of

all flaviviruses. This supports the hypothesis that all arboviruses

originally evolved in arthropods2. Lineage II ISFs on the other

hand are genetically much more closely related to the pathogenic

flaviviruses and are hypothesised to have recently evolved from

a vertebrate-infecting ancestor. This also provides support for

convergent evolution amongst ISFs.

The inability to replicate in a vertebrate host indicates that ISFs

utilise a form of vertical transmission, a process that has been

demonstrated in the laboratory for a number of ISF species13,14

(Figure 1c). Our own studies with Parramatta River virus (PaRV),

a Lineage I ISF isolated fromAedes vigilax in Sydney, revealed that a

high proportion of both male and female progeny of wild-caught

female mosquitoes that were hatched and reared in the laboratory

were infected with PaRV (unpublished data). Just how the virus

infects progeny mosquitoes via the egg has not been determined.

Efficient vertical transmission by ISFs can result in a very high

frequency of infected mosquitoes in some populations. This has

been shown to reach 80–100% in some studies6,14. Curiously,

a high prevalence of persistent ISF infection in mosquito popula-

tions may have a significant effect on the transmission of flavivirus

pathogens suchasWNVordengue. Indeed, laboratory studiesbyus

and others have shown that female Culex mosquitoes previously

infected (naturally or artificially) with Lineage I or Lineage II ISFs

reduced their susceptibility to infection byWNV and their ability to

transmit this virus, likely due to the apparent localisation of ISF

replication to the cells of themosquitomid-gut15,16 (Figure 2). This

suggests that ISFs may naturally regulate the transmission of

pathogens in some mosquito populations and may present an

opportunity to develop novel strategies to reduce the transmission

of mosquito-borne viral disease.

To understand why ISFs do not replicate in vertebrate cells, we

developed a series of research tools to identify the stages of the

cellular replication cycle at which restriction occurs. These includ-

ed monoclonal antibodies to detect the viral proteins of ISFs

produced during replication, and infectious DNA-clones of these

viruses to identify viral factors associated with host restric-

tion6,9,17,18. These infectious DNAs have enabled us to replace

different parts of the ISF genome with the corresponding region

of West Nile virus, a flavivirus that successfully replicates in most

vertebrate cell types. These chimeric viruses have revealed that the

structural genes that code for the virion envelope proteins of ISFs

are unable to facilitate entry of the virus to vertebrate cells, while
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Figure 1. (a) Typical arbovirus transmission cycle. (b) Proposed transmission cycle of insect-specific viruses. (c) Phylogenetic tree showing the
different genetic lineages of insect-specific flaviviruses within the genus. Viruses discovered by our lab are highlighted in blue.
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components in the remainder of the genome (non-structural

proteins and untranslated regions of the positive strand RNA

genome) render ISFs incapable of initiating replication in the

cytoplasm of vertebrate cells.

Our success in producing chimeric viruses between an ISF (PCV)

and a pathogenic flavivirus (WNV) led us to express the immuno-

genic antigens of WNV and other pathogenic flaviviruses to

develop a new platform for the safe and simple production of

diagnostic antigens and vaccine candidates. Using PCV as the

geneticbackbone,wewere able to construct viable chimeric viruses

that expressed the prM and E virion proteins of WNV, ZIKV or

DENV 218 (Figure 3a, b; unpublished data) that are antigenically

authentic and suitable as diagnostic antigens (Figure 3c). Subse-

quently, we have identified other ISF species that can be also used

for this purpose. Importantly, the chimeric viruses exhibit the host

restriction phenotype of the parental ISF and do not replicate in

vertebrate cells. They can also be grown to high titre in mosquito
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Figure 2. (a) Transmission of West Nile virus by Culex annulirostris previously infected with the insect-specific flavivirus Palm Creek virus (PCV)
was reduced from 64% (29/45) in PCV-free controls to 37% (14/41) in PCV-infected mosquitoes. (b) An IHC image showing PCV-infected cells
in the mosquito midgut. Figure modified from Hall-Mendelin et al.16.
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Figure 3. (a) Schematic of the CPER strategy to generate infectious DNA of PCV/WNV-prME. (b) Stylised schematic of PCV/WNV-prME
particles displaying WNV prM and E structural proteins on the virion surface (blue) and capsid protein of PCV (gold). (c) Evidence for the utility of
the PCV/WNV-prME chimera in diagnostic assays as demonstrated by the recognition of WNV-immune human sera to WNV-chimeras in fixed cell
ELISA using virus-infected C6/36 mosquito cell monolayers. Figure modified from Piyasena et al.18.
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cell culture, often to orders of magnitude greater than the parental

pathogenic virus.

Future directions

We are currently elucidating the precise mechanisms involved in

the transmission of ISFs and the ecological context in which this

occurs. Elucidating themolecular basis of their host restriction and

how this relates to the evolution of different ISF lineages is also

another interesting facet of our research. While the application of

ISFs to develop recombinant platforms for safe diagnostics and

vaccines provides exciting potential for biotechnology, we are also

intrigued by the apparent regulation of pathogen transmission

in mosquito populations that carry ISFs and the possibilities of

exploiting this phenomenon to control the transmission of flavi-

virus diseases.
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