Microbial health-based targets for drinking water: current state and Australian case study

Through the avoidance of a substantial health burden globally, access to safe drinking water is an important foundation of public health. An emerging development in this regard is the use of public health metrics, such as disability-adjusted life years, to inform water safety planning. This paper examines the hypothesis that confidence in the protection of public health, on the part of water suppliers, health regulators, and ultimately consumers is strengthened through the implementation of a health outcome target for the microbial safety of drinking water. A case study demonstrating the implementation of the target is presented.

The recent contamination of Campylobacter spp. in drinking water supplies in Havelock North, New Zealand highlights that access to safe drinking water remains an area of importance to public health even in developed countries. It is estimated that, of the 14,000 inhabitants, 5,500 (39%) contracted campylobacteriosis. This was not an isolated issue: waterborne outbreaks in developed countries continue to be attributable to deficiencies in municipal drinking water services. Even seemingly unrelated disturbances to municipal drinking water supply can be implicated in microbial disease outbreaks. Secondary impacts of the water supply lead contamination in Flint, Michigan, USA are thought to include the increased incidence of shigellosis and Legionnaires’ disease. Further, health impacts of waterborne microbial contaminants are not limited to infectious disease; elevated levels of microcystins (a group of toxic cyanobacterial metabolites) triggered the issuance of a precautionary ‘do not drink’ notice for the 400,000 inhabitants of Toledo, Ohio, USA, lasting several days in 2014. Thus, drinking water supplies represent an environmental exposure route of far-reaching and wide-ranging public health consequence. Comprehensive planning for safe water supplies is therefore a prudent investment in public health.

The WHO promotes the use of a preventive risk management system (the water safety plan) as an international norm for the assurance of drinking water safety. Water safety plans facilitate the establishment of a comprehensive set of preventive management actions for the quality assurance of drinking water safety, similar to the hazard analysis and critical control point (HACCP) principles and ISO 22000 standard for food safety management. Its use has been demonstrated to be an effective public health intervention. Water safety planning further considers the need to meet the unique challenges associated with drinking water supply. Challenges include variation in quality of source water, the

Christopher EL Owens, Paul M Byleveld and Nicholas J Osborne

School of Public Health and Community Medicine, UNSW Medicine, UNSW Australia, NSW 2052, Australia
Sydney Water Corporation, PO Box 399, Parramatta, NSW 2124, Australia
Water Unit, NSW Health, Locked Bag Mail 961, North Sydney, NSW 2059, Australia
European Centre for Environment and Human Health, University of Exeter, Royal Cornwall Hospital, Truro, TR1 3HD, UK

Tel: +61 403 854 950, Email: chris.owens@student.unsw.edu.au
need for continuity of supply, and the consideration of aesthetic and other physical characteristics.

In Australia, water safety planning is authoritatively guided by the Australian Drinking Water Guidelines. Since 2004, the Australian Drinking Water Guidelines has recommended preventive risk management of water supplies through the Framework for Management of Drinking Water Quality. In effect, implementation of water safety planning (in a manner consistent with the Australian Drinking Water Guidelines or an analogous regime) is required by the health regulators of all Australian states, the Northern Territory, and the Australian Capital Territory. The most recent development in Australian water safety planning is the expected incorporation of a health outcome target for drinking water treatment into the Australian Drinking Water Guidelines. The health-based target approach is currently under development by the National Health and Medical Research Council to be included in the revised Guidelines. The target, 10^{-6} disability-adjusted life years per person-year, can be met by having drinking water treatment performance limits set commensurate to the microbial challenge expressed by the source water.

The Water Services Association of Australia method for the derivation of water treatment process criteria for the achievement of the health outcome target for the microbial safety of drinking water, based on the Water Services Association of Australia method, showing results for a large water treatment plant in New South Wales, Australia. QMRA, quantitative microbial risk assessment; HBT, health-based target of 10^{-6} disability-adjusted life years per person-year; IFE, individual filter effluent; CFE, combined filter effluent; Ct, primary disinfectant contact-time; NTU, nephelometric turbidity units.

The introduction of the health outcome target signifies a challenge and opportunity. For water suppliers and regulators, its implementation is a non-trivial investment of effort yet offers a substantial opportunity to gain increased confidence in the adequacy of drinking water treatment. It can thus provide valuable evidence for improvement to operations and infrastructure for the achievement of safe drinking water supplies.

Acknowledgements

This work was supported by an Australian Government Research Training Program Scholarship. Dr Mark Angles is thanked for his advice and leadership in this area.

References

Enteroviruses (EV) comprise viruses originally classified on cell culture replication patterns and clinical manifestations into a number of groups: poliovirus, coxsackievirus A, coxsackievirus B and ECHOvirus. The closely related genus Parechovirus has more recently been associated with human disease. EVs are common commensals of the human gut, often found without any ill effects on the person, but are also associated with a wide range of diseases and syndromes including non-specific rash illnesses, hand, foot and mouth disease (HFMD), conjunctivitis, meningitis and encephalitis, myocarditis and polio. This results in a significant burden of disease worldwide, often due to a particular genotype of EV. An estimated 1 billion people are infected with EV every year.

Public health impact of the Enteroviruses and Parechoviruses

Ben Knippenberg

Public Health, South Eastern Sydney Local Health District Randwick, NSW, Australia Email: ben.knippenberg@health.nsw.gov.au

Mark J Ferson

School of Public Health and Community Medicine University of New South Wales Kensington, NSW, Australia

Biographies

Christopher Owens is a doctoral student at the UNSW School of Public Health and Community Medicine and a Senior Analyst at Sydney Water. His research interests include water safety planning and water quality risk models.

Paul Byleveld is the Manager of the Water Unit at NSW Health and the co-supervisor of this research.

Nicholas Osborne is a Senior Lecturer at the UNSW School of Public Health and Community Medicine and the principal supervisor of this research.