Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), is an important neonatal pathogen known to cause sepsis, meningitis and pneumonia. Australian pregnant women undergo screening during pregnancy in an effort to eradicate GBS before delivery where transmission to the neonate can occur. Preventative treatment includes intrapartum antibiotic prophylaxis and results in widespread treatment of the 10–40% of pregnant women colonised. GBS are separated into ten different capsular polysaccharide serotypes and previous studies have suggested associations between specific serotypes and disease. At present, however, minimal data exist on serotype distribution within Western Australian-pregnant women, information that may play an important role in future prophylactic treatment regimens. Our preliminary data, obtained from GBS isolated from vaginal swabs from 191 pregnant women, suggests that GBS serotype distributions in Western Australia are different to other parts of Australia. In particular, compared to the eastern Australian states and New Zealand, in our cohort, serotype Ib prevalence was 7–17 times lower, II was 2–6 times greater and VI was 2–12 times greater. In addition, serotype IX represented 6.3% of all serotypes. Understanding which serotypes are present in our population will provide valuable data for future targeted treatment regimens such as vaccination and bacteriophage therapy.

Group B Streptococcus during pregnancy

Neonates are among the most vulnerable forms of life, they enter this world with minimal immune defences and are faced with a vast array of opportunistic pathogens ready to colonise. One such organism is Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), which is responsible for morbidity and mortality in the immunocompromised, elderly and in particular, neonatal populations. GBS infection is a leading cause of sepsis and can also lead to meningitis, pneumonia, shock and even death. It is understood that transmission of this organism can occur from a commensally colonised mother to her baby during birth, in utero (vertical) or alternatively through nosocomial transmission once born (horizontal). In an effort to prevent infant GBS infection, risk-based and culture-based screening of pregnant women followed by intrapartum antibiotic prophylaxis has been introduced in a number of countries globally. In Australia, pregnant women are screened for presence of GBS several weeks before expected delivery to determine colonisation status. If a patient is found to carry GBS, antibiotics are administered prior to delivery in an effort to eradicate the organism before the neonate is exposed.

Serotypes

Global carriage rates among pregnant women are estimated at 10–40% which results in widespread antibiotic use in this population. Due to contraindications of a number of drug classes during
pregnancy the antibiotics of choice include penicillin or if the
woman is sensitised, cephalazin or clindamycin. Penicillin resis-
tance has rarely been described, however, clindamycin resistance is
rising and has been reported recently in Australia. Our current
culture detection gives a presence/absence result and does not
define characteristics of colonisation such as serotype. GBS are
encapsulated and have a capsular polysaccharide (cps) locus that
determines one of 10 serotypes (Ia, Ib, II–IX). Global distribu-
tions of these serotypes have shown variation in each region: for
example, most countries have cps types Ia, Ib, II, III and V as the
most common, although Japan has found prevalence of cps VIII,
which globally is considered rare. The capsule is considered
an important virulence factor and some serotypes are associated
with invasive disease more so than others. For example, cps III has
been observed in association with neonatal bloodstream infection,
while cps V more so in cases of adult disease. Understanding
serotype distribution and its role in disease may improve the way we
treat women during pregnancy.

GBS in Western Australia

Our research aims to determine which serotypes are prevalent
amongst Western Australian pregnant women and explore alter-
native targeted treatment options. Our study is currently recruiting
1000 pregnant women at King Edward Memorial Hospital, Perth,
Western Australia and collecting vaginal and rectal specimens at
14–22 and 34–38 weeks’ gestation. The specimens are cultured and
PCR tested for GBS presence and common serotypes Ia, Ib and III
using our novel multiplex qPCR assay. Other remaining serotypes
are confirmed through methods described by Imperi et al. Initial
retropective studies of vaginal specimens from the UPCAN
study found interesting results compared to those previously
reported in Australasia (Figure 1). The main differences in sero-
types compared to other studies are seen for cps Ib, II, VI and IX in
our WA cohort. We have identified a lower incidence of common
serotype cps Ib and higher incidence of cps II, VI and IX. It must be
noted, however, that a number of these previous studies had not
tested for cps IX due to it only being proposed as a new cps type
in 2009. Comparison of cps IX to the Australia-wide study by Ko
et al. is appropriate, as testing for this new serotype was included,
but no cases were detected.

Clinical impact and future directions

Monitoring of GBS strains within the pregnant community gen-
erates clinically useful information about this pathogen and can
equip us for future targeted prevention and treatment strategies.
For example, vaccination development targeting the capsule has
now progressed with a number of candidate vaccines targeting
multiple cps types such as Ia, Ib and III. Knowledge of prevalent
serotypes could impact our vaccination strategy as we discover
differences in serotype distribution amongst different geographical
populations. Another alternative targeted therapy that we are
researching is bacteriophage therapy. The major principle behind
this is that the specificity and lytic activity of these bacterial viruses
could provide a targeted GBS treatment solution that would
concurrently help to prevent emerging antibiotic resistance
and microbiome dysbiosis, in addition to avoiding the unknown

Figure 1. Prevalence of 10 Streptococcus agalactiae serotypes (Ia, Ib, II–IX) and non-typeable (NT) from previous studies across Australasia
compared to our preliminary Western Australian data.
impacts of antibiotic exposure on the newborn. We are currently isolating and testing novel bacteriophages for lytic activity against clinical GBS strains to assess future potential.

This research is all about defining our target in an effort to improve clinical detection and refining treatment strategies, to ensure we protect our vulnerable neonates.

Acknowledgements

Funding for this research was received by MSP from the Women’s and Infants’ Research Foundation (WIRF) and the Channel 7 Telethon Trust. LLF is supported by the Australian Government Research Training Program Scholarship and the Professor Gordon King Postgraduate Scholarship provided by WIRF. MSP is supported by a NHMRC Project Grant [1077931]. The authors thank Professor Lyn Gilbert and Dr Fanrong Kong for providing the GBS reference isolates.

References

Biographies

Lucy Furfaro is a final year PhD candidate researching GBS dynamics in Western Australian pregnant women and a potential alternative treatment using bacteriophage therapy. She has developed a novel multiplex PCR assay to detect GBS and clinically relevant serotypes with the potential for diagnostic use.

Barbara Chang is a Professor within the School of Biomedical Sciences at the University of Western Australia, known for her expertise in molecular bacteriology and bacteriophage research.

Matthew Payne is a Research Fellow within the School of Medicine at the University of Western Australia, and a highly experienced molecular microbiologist with expertise in perinatal microbiology.

Member of Australian Society for Microbiology (MASM)

Want to upgrade from an associate to a full member?
No points or cash required and only one supporting referee needed.
Go to the ASM website, download and complete the form, and forward it with a CV to the National Office.
We will do the rest.