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While Reston and Lloviu viruses have never been associated

with human disease, the other filoviruses cause outbreaks

of hemorrhagic fever characterised by person-to-person

transmission and high case fatality ratios. Cumulative

evidence suggests that bats are the most likely reservoir

hosts of the filoviruses. Ecological investigations following

Marburg virus disease outbreaks associated with entry

into caves inhabited by Rousettus aegyptiacus bats led to

the identification of this bat species as the natural reservoir

host of the marburgviruses. Experimental infection of

R. aegyptiacus with Marburg virus has provided insight

into the natural history of filovirus infection in bats that

may help guide the search for the reservoir hosts of the

ebolaviruses.

Filovirus history and geographic range

The phylogeny illustrates the genetic relationships between the

filoviruses and the associated map shows the known range of

filovirus circulation according to virus (Figure 1). Marburg virus

(MARV) was first described in 1967 following two successive filo-

virus hemorrhagic fever (FHF) outbreaks among German and

former-Yugoslavian laboratory workers that had handled primates

imported from Uganda1. Ravn virus (RAVV), also a marburgvirus,

was initially isolated from a 1987 fatal case in Kenya2. Nearly

simultaneous FHF outbreaks in present-day South Sudan and the

Democratic Republic of the Congo (DRC), led to the identification

of Sudan virus (SUDV)3 and Ebola virus (EBOV)4, respectively.

Reston virus was discovered in 1989 following an epizootic of FHF

among macaques exported to the United States from the Philip-

pines5. Taœ Forest virus has been isolated once only from a nonfatal

case that became ill following the necropsy of a chimpanzee

that died from a hemorrhagic disease in Côte d’Ivoire in 19946.

Bundibugyo virus was initially isolated during a FHF outbreak

in Uganda in 20077. Lloviu virus was identified during the investi-

gation of a die-off of Miniopterus schreibersii bats in Spain in

20028. A partial genomic sequence recovered from a Rousettus

leschenaultiibat captured inChina in2013 likely represents anovel

filovirus9. Ecological niche modelling has confirmed the known

range of filovirus circulation and has predicted additional areas

throughout sub-Saharan Africa and Southeast Asia that are suitable

for zoonotic transmission of filoviruses10–13.

Evidence suggests that bats are natural reservoir

hosts of the filoviruses

Although contact with non-human primate or duiker tissue has

been linked to FHF outbreaks1,14–16, the high mortality caused by

filoviruses in these animals indicate that they are only incidental

hosts. However, FHF outbreak investigations have revealed that

many of the index cases had entered environments inhabited by

bats prior to disease onset. In 1975, MARV disease occurred in a

tourist that had stayed in twohotels populatedwith bats and visited

Chinhoyi Caves in present-day Zimbabwe 8–9 days prior to disease

onset17. The index case in the 1976 outbreak of SUDV disease

worked at a cotton factory containingMops trevori18 and the index

case in the 1979 SUDV disease outbreak worked at the same

factory19. Fifteen days before becoming ill, the index case in the
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1980 MARV disease outbreak had entered Kenya’s bat-populated

ElgonCaves2 and the 1987-isolated caseof RAVVdiseasehad visited

Kenya’s Kitum Cave prior to becoming ill20. After the large 1995

epidemic of EBOV disease in present-day DRC, 24 plant and 19

vertebrate and invertebrate native species were experimentally

inoculated with EBOV21. Three bat species (Mops condylurus,

Chaerephon pumilus and Epomophorus wahlbergi) supported

EBOV replication and seroconverted in the absenceof overt clinical

disease, while the remaining animal and plant species were refrac-

tory to virus infection. These findings supported the accumulating
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Figure 1. Filovirusmaximum-likelihood phylogeny and geographic distribution. The phylogenywas derived from concatenated partial nucleoprotein,
viral protein 35 andRNA-dependentRNApolymerasefilovirus gene sequences. A single representative sequence fromeachcountry inwhich filovirus
zoonotic spillover has been detected or spillover into humans has occurred was selected to capture the geographic range of virus circulation.
Sequencesarecolouredaccording to thesampling locationand thecolourscorrespond to thoseused in theassociatedmapand legend.Thenumbers
to the lower-left of the nodes are bootstrap percentages based on 1000 replicates. Horizontal branch lengths are proportional to the genetic distance
between sequences and the scale underneath the phylogeny indicates the number of nucleotide substitutions per site.
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number of links between FHF index cases and prior exposure to

environments inhabited by bats. This linkage became stronger

when it was discovered that 52% of the 154 cases in a series of

MARV disease outbreaks in the DRC between 1998 and 2000

worked in the underground Goroumbwa Mine known to house

hundreds of thousands of bats22. In 2007, an EBOV disease out-

break followed a reported annual migration of Hypsignathus

monstrosus and Epomops franqueti and the putative index case

had purchased bats for consumption23. The index cases in a series

of MARV and RAVV disease outbreaks in 2007 worked in Kitaka

Mine, Uganda24 and two cases of MARV disease were found in

tourists that had separately visited nearby-PythonCave in 200825,26.

Rousettus aegyptiacus identified as a natural

reservoir host for the marburgviruses

Ecological investigations following the 2007–2008 MARV and RAVV

disease outbreaks in Uganda revealed that Kitaka Mine and Python

Cave were inhabited by large numbers of R. aegyptiacus24,27.

Follow-up longitudinal studies of R. aegyptiacus populations at

thesesites revealedaconsistentprevalenceofbothMARVandRAVV

infection in 2–5% of the bats. Genetically diverse marburgviruses

were isolated from bat tissues that were genetically similar to those

sequences generated from outbreak cases. Further, the studies

found a temporal association between marburgvirus spillover

events, biannual pulses of active MARV infection in juvenile bats

and the biannual birthing season. These studies provided the

evidence needed to definitively identify R. aegyptiacus as a natural

reservoir host of the marburgviruses and a source of spillover into

the human population.

Natural history of MARV infection

in R. aegyptiacus

Following the discovery of R. aegyptiacus as the natural reservoir

host for themarburgviruses, experimental studies were initiated to

investigate the natural history of virus infection in this bat species.

The first published study by Paweska et al. found that bats inoc-

ulated by the intraperitoneal and subcutaneous routes with a Vero

cell-adapted, human-derived MARV strain exhibited viral replica-

tion in multiple tissues in the absence of overt illness followed by

seroconversion, while bats dually inoculated by the oral and nasal

routes showed no evidence of infection within the 21-day study

period28. A second study by Amman et al. found that bats subcu-

taneously inoculated with a low-passage, bat-derived MARV strain

shed virus in their oral secretions up to 11 days following infection

and led to the hypothesis that the virus may be horizontally

transmitted between bats through direct and/or indirect contact

with infectious oral secretions or biting29. To investigate the

mechanisms of bat-to-bat MARV transmission, a third study by

Paweska et al. housed groups of donor bats inoculated with a

human MARV strain with naïve contact bats in direct, indirect or

airborne contact and monitored for evidence of infection for

42 days30. No evidence of infection was detected in the contact

bats; however, the inoculated bats shed little to no MARV in their

bodily fluids and were serially sacrificed as the study progressed.

The possibility that hematophagous ectoparasitic argasid ticks

(Ornithodoros faini) found in large colonies of R. aegyptiacus

might facilitate marburgvirus transmission was ruled-out when

>3000 O. faini ticks collected from Python Cave tested negative

for marburgvirus RNA31. Further studies are needed to determine

how MARV is maintained in its natural reservoir host.

Search for the natural reservoir hosts

of the ebolaviruses

Although the index casesof ebolavirusdiseaseoutbreakshavebeen

linked to bats, they have never been associated with a particular

environment, such as caves, like the index cases of marburgvirus

disease outbreaks. Therefore, the search for the reservoir hosts of

the ebolaviruses has involved testing a wide-range of wild-caught,

forest-dwelling bats for evidence of ebolavirus infection. Serolog-

ical reactivity of bat sera with ebolavirus antigen has been detected

in 307 bats representing at least 17 species throughout sub-Saharan

Africa and Asia32–40. Evidence of active ebolavirus infection has

been found in seven bat species – EBOV RNA has been detected in

three solitary, forest-dwelling frugivorous species (E. franqueti,

H. monstrosus andMyonycteris torquata) captured in Gabon and

the Republic of Congo32 and RESTV RNA has been detected in four

diverse species (Chaerephon plicatus, Cynopterus brachyotis,

Miniopterus australis and M. schreibersii) captured in the Philip-

pines39. However, infectious ebolavirus has never been isolated

fromanyof thesebat species. Consequently, it is unknownwhether

they are primary reservoir hosts of the virus, secondary reservoir

hosts that play aminor role in virusmaintenanceor incidental dead-

end hosts that are susceptible to infection, but do not shed

infectious virus. It is interesting to note that MARV RNA in the

absence of infectious virus has been detected in Miniopterus

inflatus, Rhinolophus eloquens and Hipposideros sp. bats that

roost with R. aegyptiacus24,41. Similarly, investigations examining

the susceptibility of R. aegyptiacus bats to experimental infection

with each of the five ebolaviruses demonstrated very limited

replication and no viral shedding followed by seroconversion42,43.

These findings suggest that sporadic detection of filovirus RNA or

IgG antibodies from wild-caught bats may only represent virus

spillover resulting from contact with a primary reservoir host.
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Expectations of a filovirus natural reservoir host

Based on what we have learned about marburgvirus infection in

R. aegyptiacus, we would expect the reservoir hosts of the ebola-

viruses to have a consistent prevalence of both active and past

infection, shedsufficientlyhigh levelsof infectious virus tomaintain

virus circulation in the population and exhibit host population

dynamics conducive to virus transmission. Host population-level

viruspersistence ishighlydependentonhostpopulationdynamics,

particularly community size and annual fluctuations in age-struc-

ture from births and deaths. Mathematical modelling of marburg-

virus transmission in aclosedpopulationofR.aegyptiacus revealed

that the virus was only able to persist if the model included: (1) a

biannual breeding component that provideda twice-yearly influxof

susceptible juveniles; (2) a latent period of�21 days; and (3) a host

population size �20 00044. This suggests that if the natural reser-

voirs of the ebolaviruses are a solitary bat species that only con-

gregates during the breeding season(s), host population-level virus

maintenancemay depend on othermechanisms such as persistent

infection with intermittent shedding, as has been observed with

otherbat-borneviruses45–49. The largenumberofbat specieswithin

the geographical range of ebolavirus circulation complicates the

search for the natural reservoir host of these viruses. In an effort to

guide field sampling efforts, Peterson et al. used a series of

biological principles to develop a priority list of mammalian clades

that coincidedwith pastfilovirus disease outbreaks50 andHan et al.

used a machine learning algorithm to identify potential filovirus-

positive bat species based on intrinsic trait similarity with known

filovirus RNA-, isolation- and antibody- positive bat species51.

For more information on filoviruses and bats, we would like to

direct readers to recent overviews published by Olival and Hay-

man52, Wood et al.53, Leendertz et al.54 and Amman et al55.
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