Pitfalls of viral load testing

Viral load testing is the quantitative measurement of viral nucleic acid in body fluids or tissues. In medical practice, viral load assays are commonly performed for HIV, Hepatitis B and Hepatitis C viruses. These assays are funded under the Medicare Benefits Schedule (MBS) system (Item numbers 69378/81/82, 69482/3 and 69488 respectively; http://www.health.gov.au/internet/mbsonline/publishing.nsf/Content/Medicare-Benefits-Schedule-MBS-1).

When is viral load testing performed?

In 2008–2009, 53,592 medicare claims for viral load testing were paid, including approximately 22,500 HIV, 20,000 Hepatitis C and 11,000 Hepatitis B (http://www.medicareaustralia.gov.au/statistics/mbs_item.shtml).

In untreated HIV patients, higher viral loads are associated with an increased rate of CD4 T cell loss and increased risk of progression to AIDS. HIV viral load is used as a tool to monitor patients off therapy, a guide to commencing therapy and a means for monitoring the effectiveness of therapy. In Hepatitis C infections, viral load testing is used as a predictor of response to therapy, with HCV genotype 1 viral loads of less than 600,000 IU/ml being associated with increased rates of successful therapy. Further, patients failing to get a 2 log drop in viral load by week 12 are unlikely to respond to a full course of interferon and ribavirin and are not eligible for Medicare-funded treatment beyond 12 weeks. In Hepatitis B patients, high viral load is associated with increased risk of progression to cirrhosis and hepatoma. HBV viral load testing is funded for the evaluation of patients prior to therapy (the majority of testing) and the monitoring of patients undergoing antiviral therapy.

Viral load testing is important in the management of other medically important viruses. Cytomegalovirus (CMV) viral load measurement is performed either as part of a pre-emptive strategy for the prevention of disease in transplant patients or for monitoring the success of therapy. Polyomavirus BK quantitation in plasma enables the prediction of BK virus-associated nephropathy in renal transplant patients. EBV quantification in plasma may enable the prediction of post-transplant lymphoproliferative diseases or other B cell lymphomas. However, none of these tests have a specific MBS reimbursement number.

Methods in use in Australia

Like qualitative nucleic acid detection, quantitative nucleic acid detection methods fall into two main groups: target amplification and signal amplification. Target amplification may be achieved by conventional polymerase chain reaction assays, isothermal DNA or RNA amplification assays. However, all quantitative assays must use a standard curve using known starting concentrations of target nucleic acid. This may be from whole organisms, PCR-generated DNA, plasmids or synthetic nucleic acids. Copy numbers may be estimated by measuring the OD of purified nucleic acid, or may be limited to some measure of infectivity (colony-forming units or TCID50). For HIV and Hepatitis B and C, the quantitative assays are standardised against an international standard and results expressed in international units per ml. For example, Hepatitis C RNA copies per ml and converted to IU/ml using conversion factors of 1 IU/ml=2.7 copies/ml for Roche Cobas Taqman and Cobas Amplicor HCV Monitor 2.0 assays and 5.2 copies/ml for the Bayer Versant assay.

A review of the data from each of the Royal College of Pathologists of Australasia (RCPA; http://www.rcpaqap.com.au/serology) and National Serology Reference Laboratory, Australia (NRl; http://www.digitalpt.com/catalog/CatalogAI/2010_en_Diagnostic_Nucleic_Acid_Testing.pdf) quality assurance programs (QAP) shows that commercial assays using different viral detection techniques and from a variety of manufacturers are in use for the estimation of HIV, HCV, HBV and CMV loads.

The majority of testing is performed using target amplification real-time PCR assays from Roche or Abbotts. Signal amplification assays from Siemens are in use for HIV, but no transcription-mediated amplification assays are used for viral load monitoring. Each of these manufacturers supplies highly automated equipment which is used by the majority of laboratories for the performance of nucleic acid extraction and load testing. In-house assays are uncommon. For example, only one laboratory reported using an in-house quantitative assay (CMV). This reflects the availability of an adequate MBS reimbursement that will cover the cost of the commercial assays plus de facto recognition of the difficulty in designing quantitative assays for genetically variable viruses.

Examples of three commercial kits using different technologies for HIV load assay:

- Roche AMPLICOR HIV-1 Monitor test (Hoffman-La Roche), commonly known as the PCR test.
PCR and other target amplification assays, the use of sealed contamination is absent in the signal amplification assays. For amplification and detection areas apply. The risk of amplicon preparation, sample preparation, reaction assembly areas, Standard molecular laboratory precautions of separating reagent All amplification reactions may be subject to contamination. Contamination improve extraction efficiency and stability. of nucleic acid may need carrier DNA or RNA included to by RNase inhibitors or storage at –20˚C or colder. Low quantities nucleic acids must be protected from degradation, for example, for differing reaction efficiencies in different samples. Purified efficiency. The same target can be used to monitor for inhibition possibly synthetic target in the lysis buffer to monitor extraction genome target in the nucleic acid testing, or preferably a unique and should be controlled, for example, by including a human Nucleic acid extraction may vary in efficiency from run to run. Nucleic acid extraction identification is not lost during sample manipulation. Sample type, transport and storage, length of time until separation of plasma or serum may impact upon final copy numbers. For HIV, samples spun in the presence of gel but not immediately separated may show small increases in viral load. Fortunately most viruses are relatively stable in serum or plasma at 4˚C. During manual aliquotting, samples should be handled separately in a biosafety cabinet.

Nucleic acid extraction

Nucleic acid extraction may vary in efficiency from run to run and should be controlled, for example, by including a human genome target in the nucleic acid testing, or preferably a unique possibly synthetic target in the lysis buffer to monitor extraction efficiency. The same target can be used to monitor for inhibition of the amplification reaction and may provide a correction factor for differing reaction efficiencies in different samples. Purified nucleic acids must be protected from degradation, for example, by RNase inhibitors or storage at –20˚C or colder. Low quantities of nucleic acid may need carrier DNA or RNA included to improve extraction efficiency and stability.

Contamination

All amplification reactions may be subject to contamination. Standard molecular laboratory precautions of separating reagent preparation, sample preparation, reaction assembly areas, amplification and detection areas apply. The risk of amplicon contamination is absent in the signal amplification assays. For PCR and other target amplification assays, the use of sealed reaction wells, real-time fluorescence detection of amplicons, and/or dUTP and Uracil glycosylase in PCR reaction mix also reduces the risk of contamination.

Selection and design of assays

Assay design and quantitation is complicated when the target virus is highly variable. HIV, Hepatitis B and Hepatitis C exist in a number of groups, clades or genotypes and, particularly in the case of RNA viruses, numerous quasispecies within the one host. This creates difficulties for primer and probe design. Highly conserved regions must be targeted and redundancies may need to be included in oligonucleotides or multiple primers and probe sets used to cover the range of virus types. Shorter detection probes utilising duplex stabilising technologies such as LNA bases, 3’ minor groove binder (MGB) or 3’ BHQplus may enable optimal annealing temperature and stability of the probe-target reaction to be achieved while targeting shorter conserved regions that conventional probe formats could not reliably detect. Where genetic variability is known, the sensitivity of the assay for each of the most common genotypes must be established and monitored. QAP programs must use different genotypes of the viruses.

Sample preparation

Problems with PCR testing may begin at sample collection and processing. Laboratories must check sample identity and check the samples against request forms and ensure patient identification is not lost during sample manipulation. Sample type, transport and storage, length of time until separation of plasma or serum may impact upon final copy numbers. For HIV, samples spun in the presence of gel but not immediately separated may show small increases in viral load. Fortunately most viruses are relatively stable in serum or plasma at 4˚C. During manual aliquotting, samples should be handled separately in a biosafety cabinet.
results. The RCPA and NRL QAP report results as log_{10} values including standard deviations (SD) and coefficient of variation (CV). In the RCPA QAP a +/– 0.25 log_{10} range (less than twofold variation) is one measure used to compare inter-laboratory performance. NRL monitors the day-to-day performance of these assays in different laboratories through its Quality Control (QC) programs using EDCNet (www.nrlqa.net). The QC sample results of one laboratory’s HIV and Hepatitis C viral load assays compared to the statistics of other laboratories using the same QC sample and assay are shown as Shewhart graphs in Figure 1. In the NRL Diagnostic NAT QC report of September 2007–2008 SDs of between 0.1 to 0.2 log_{10} and CVs of between 2% and 8% were seen with a range of HIV, HBV and HCV viral load assays.

Given the complexity of these assays and the target viruses, the intra- and inter-laboratory reproducibility of results is remarkable. It is a testament to the quality of the equipment and reagents available in the country, the skill of the laboratory staff performing the testing and the efficacy of the quality assurance programs used in Australia.

Acknowledgements

I wish to thank Patricia Hahesy and Mark Turra (SA Pathology) for their helpful criticisms and assistance in writing this article and ThuAnh Pham and Sue Best (NRL) for permission to use the Shewhart plots.

References

Figure 1: Shewhart plots from EDCNet showing QC sample results over time in HIV and HBV viral load tests.