Non-typhoidal *Salmonella* spp. are common food-associated pathogens, and *Salmonella* infections are one of the most common causes of death associated with food-associated illness, especially in developing countries. As in many other developing countries, raw food hygiene and antimicrobial resistance epidemiology are in their infancy in Vietnam. In addition, the lack of stringent controls on antimicrobial usage in human health and particularly in animal production systems increases the risk of food-borne pathogens harbouring and disseminating antibiotic resistance genes. For countries such as Vietnam, Thailand and other Asian countries, *Salmonella* vaccination is a more cost-effective way of controlling *Salmonella* in food production animals than the use of antibiotic therapy.

Salmonella pathogenicity

The ability of *Salmonella* spp. to cause infection is dependent upon the expression of virulence determinants and the complex activities these virulence determinants initiate upon contact and entry into the host cell. Although a majority of *Salmonella* spp. are pathogenic to humans and animals, their virulence appears to vary from serovar to serovar and this diversity can be attributed to genetic variation or polymorphisms in virulence genes. Variations in surface structures such as lipopolysaccharides, fimbriae and products encoded by virulence plasmids have been shown to contribute towards the pathogenicity and host range of a *Salmonella* strain. The virulence of a serovar is also largely affected by genetic modifications (insertion and deletion events and mutations) to genes clustered on *Salmonella* pathogenicity islands (SPI1-5). Studies of SPI1 to SPI5 of various *Salmonella* spp. (e.g. Typhimurium and Sofia) have revealed a range of genetic changes in these islands which could contribute to the variation in virulence and host range of *Salmonella* spp. These genetic variations explain why some *Salmonella* serovars such as Typhimurium are virulent and a common cause of food-borne illness worldwide, while other serovars such as Sofia, which colonises avian species, is avirulent in people.

Distribution of Salmonella spp. in food products in Vietnam

In selected countries in Asia, *Salmonella* spp. is still a major cause of disease. In many cases, this is because meat is sold fresh in the market, there is no cold chain during transportation and the quality of slaughter conditions is poor. In a study on the contamination of raw food samples by *Salmonella* spp. isolated in Vietnam, there was a considerably high prevalence of *Salmonella* spp. in raw meat and poultry, in which 64% of pork samples, 62% of beef samples and 53.3% of chicken samples were contaminated with *Salmonella* spp. Eighteen per cent of shellfish samples were also reported to contain *Salmonella*.
spp. in this study11. These samples were contaminated with Salmonella serovars associated with human salmonellosis in Asia and in Vietnam such as S. Typhimurium, S. Paratyphi B biovar java, S. Anatum, S. Panama, S. Rissen and S. Lexington. Serovar Typhimurium, the most predominant serovar in human clinical isolates12, has been isolated from meat, poultry and shellfish sources, indicating a potential health risk if these raw food samples were not properly cooked. A high prevalence of Salmonella spp. in meat samples was also noted by Phan et al.12, who reported that 21–70% of poultry and meat samples in the Mekong Delta, Vietnam, were contaminated with Salmonella spp.

The reported rates of Salmonella spp. contamination in retail meat and poultry were much lower in more developed countries such as in the United Kingdom (23–29%)14,15, Ireland (2.8–26.4%)16,17, The Netherlands (13.2%)18, Spain (35.8%)19, Belgium (36.5%)20 and in Korea (36%)21. Advanced processing practices and equipment in slaughterhouses and more effective use of refrigeration in developed countries helps to reduce the level of bacterial contamination.

Antibiotic resistance characteristics of Salmonella spp. isolated from food samples in Vietnam and potential spread of antibiotic resistance

Information on the phenotypes and genotypes of antimicrobial resistance in food-borne microorganisms is largely restricted to first-world countries and there is a paucity of information on what is happening in developing countries. Where they are reported, rates of resistance to antibiotics of bacteria originating from meat were high in developing countries22-25, possibly as a result of the inappropriate or uncontrolled use of antibiotics in farming practices.

In Vietnam, antibiotic resistance has been reported to occur in human bacterial isolates, including Salmonella enterica serovar Typhi and other diarrhoea-causing pathogens26-30. However, there has been very little published about the occurrence of antibiotic-resistant bacteria in raw food samples in Vietnam and even less about the molecular characteristics of these antibiotic-resistant bacteria. The extensive study on antibiotic resistance of food isolates by Van et al.11 showed that antibiotic resistance in Salmonella spp. in raw food samples from Vietnam was significant. In this study, 91 Salmonella spp. isolates recovered from food samples were tested for antibiotic resistance against 15 antibiotics. The results showed that approximately half (50.5%) of the isolates were resistant to at least one antibiotic; the highest rate was in chicken samples (88.9%). Multi-resistant Salmonella isolates, resistant to at least three different classes of antibiotics, were observed in all food types. The authors demonstrated that Salmonella isolated from chicken and pork showed a greater degree of resistance than that from beef and shellfish (at a significance level of 0.05), revealing the higher use of antibiotics in poultry and pig farming in Vietnam. Antibiotic resistance patterns in Salmonella food isolates from Vietnam are similar to those of other studies in many countries, showing that Salmonella isolates in retail meats were commonly resistant to tetracycline, ampicillin, sulphonamides and streptomycin31-36. They also showed that resistance of Salmonella isolates to naladixic acid was particularly high in Vietnam (38.9% in chicken) and resistance to antibiotics such as ampicillin, chloramphenicol, and tetracycline was often observed. These antimicrobial agents are still used widely in human therapy in Vietnam due to their low cost and ready availability37.

The authors also found that multi-resistance occurred in potential human-pathogenic Salmonella serovars, including serovars Typhimurium, Albany, Anatum, Havana and London. Furthermore, one serovar Typhimurium, a pork isolate was resistant to eight antibiotics, and a serovar Albany isolate from chicken was resistant to seven antibiotics. These Salmonella serovars have also been isolated from clinical human isolates in Vietnam12. Therefore, resistance to these antibiotics in food-borne pathogens may create problems for disease treatment. A further study on molecular characterisation of these Salmonella isolates38 demonstrated that they harbour a pool of mobile genetic elements such as plasmids and integrons, which contained various antibiotic resistance gene cassettes. Conjugation experiments showed the successful transfer of all or part of the antibiotic resistance phenotypes, demonstrating the role of raw food in the spreading of antibiotic resistance genes. Salmonella genomic island 1 (SGI1) is the first genomic island reported to contain an antibiotic resistance gene cluster in a 13-kb segment within a 43-kb genomic island and was identified in the multidrug-resistant Salmonella enterica serovar Typhimurium DT104. Until now, SGI1 and its variants have been identified in different Salmonella serovars and also in Proteus
mirabilis 33-46. The variant SGI1-F antibiotic resistance gene cluster was detected in Salmonella serovar Albany isolated from chicken meat in Vietnam, in which adaA2 gene, which confers resistance to streptomycin in serovar Typhimurium DT104, has been replaced by dfrA1 (trimethoprim resistance) and orfC (of unknown function) 38. Interestingly, this variant has previously been found in serovar Albany isolated from chicken in The Netherlands 47 and from fish meal in Thailand, which was imported into France 49. Fish meal is commonly used as a protein supplement in animal feed for poultry and pigs, it is possible that this strain has been transferred to Vietnam from fish meal in Thailand.

Control of Salmonella in food products: the use of vaccines

Multiresistance is becoming more and more common worldwide 31,32,34,36,69-70 and resistance genes are often contained in mobile elements such as integrons, which are easy to transmit from one strain of bacteria to another 51. Consequently, the use of antibiotics for controlling Salmonella is not recommended. The use of vaccines against Salmonella spp. is one of the control methods to protect livestock against Salmonella exposure and decrease bacterial shedding. Live Salmonella vaccines have the ability to replicate, colonise and invade intestinal and visceral organs of inoculated chickens, thus producing strong immunity in vaccinated chickens 52,53. Vaccination with attenuated Salmonella strains can protect chickens from subsequent challenge with virulent Salmonella 54-56. An aroA mutant of S. Typhimurium (strain STM1) is one of the attenuated Salmonella vaccine strains which have been used to protect livestock from Salmonella infection. For countries such as Vietnam, Thailand and other Asia countries, Salmonella vaccination is a more effective way of controlling Salmonella in food production animals than the use of antibiotic therapy; in this way Salmonella contamination in carcasses will be dramatically reduced and therefore the possibility of spreading antibiotic resistance should be minimised.

References

Biographies

Dr Thi Thu Hao Van is a Research Fellow at School of Applied Sciences, RMIT University. Her research interests are antibiotic resistance and virulence of bacterial pathogens, developing veterinary vaccines against virus and bacterial pathogens.

Dr Emily Teck Fong Gan completed her PhD degree in 2008 at RMIT University. Her research interests are molecular microbiology and bacterial pathogenesis.

Associate Professor Peter Smooker heads the biotechnology laboratory at RMIT University. His major research interests are in antigen characterisation and developing vaccine delivery strategies.

Professor Peter J Coloe is Pro Vice-Chancellor, College of Science, Engineering and Health, RMIT University and is a Fellow of ASM, His research interests are in vaccines and disease diagnostics and novel ways to control disease and to deliver vaccine antigens.