Global climate change is a major issue currently facing the international community. The primary cause of climate change arises from the human-induced increase in emission of the ‘greenhouse’ gases, primarily carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). In animal agriculture, CH₄ and N₂O emissions predominate, especially CH₄. The largest source of CH₄ in the world is enteric methane from livestock (cattle and sheep), with enteric CH₄ accounting for 28% of total methane emissions. In countries reliant on agriculture for export earnings, such as Australia and New Zealand, enteric CH₄ is the major greenhouse gas from the agriculture sector and a significant contributor to total emissions (50% of New Zealand’s and 14% of Australia’s)¹. Reducing CH₄ emissions is highly advantageous in delivering climate benefits in the shorter-term as CH₄ has a high radiative forcing potential (21 times that of CO₂) but a short atmospheric life (about 10 years), compared to 100 years for CO₂.

Microbial methane generation through anaerobic fermentation in the gut

Methane is generated during the digestion of plant material in the gastrointestinal tract of animals, particularly herbivores, including domestic ruminants. The generation of CH₄ is a result of the microbiological removal of hydrogen during the fermentative process.

Fermentation of plant material in the gut of herbivores takes place under anaerobic conditions². Large polymeric plant components (e.g. cellulose and protein) are catabolised under reducing conditions to component monomers prior to further reduction to volatile fatty acids and organic acids. Through this process ATP is generated to satisfy the energy requirements of the microbial cell. The rumen of domestic ruminants is a gut ecosystem that has been extensively studied over the past 50 years² and it is known to support at least 200 distinct species of cultivable bacteria at densities up to 10¹¹ mL⁻¹ of contents, plus 25 genera of ciliate protozoa (10⁶ mL⁻¹) and a variety of anaerobic fungi (10⁵ zoospores mL⁻¹)³. This diversity of microbes and the differing biochemical pathways that they use to reductively capture nutrients and energy results in a great range of differing products; however, a constant feature in the generation of ATP from many of these differing pathways is the generation of hydrogen through transformation of co-factors such as NADH (to NAD⁺)⁴,⁵.

Were hydrogen to accumulate, enzymic co-factors would not be re-oxidised and further fermentation would be limited⁴. Therefore, it is important to the basic functioning of these complex microbial ecosystems that hydrogen is removed. In the gut of many herbivores, hydrogen is removed by methanogenesis. Methanogenesis is peculiar to microbes within the domain Archaea. To date, the Archaea isolated from gastrointestinal environments have all been methanogenic. Methanogenic Archaea reduce CO₂ under anaerobic conditions, generating energy for growth and maintenance of the methanogens.

While methanogens from other environments synthesise methane from a variety of substrates (e.g. formate and acetate), rumen methanogens dominantly synthesise methane from CO₂ and...
H\textsubscript{2}. Species from three archaeal families (Methanobacteriaceae, Methanomicrobiaceae and Methanoplanaceae) have been isolated from ruminal contents5. However, the cultivable methanogens appear to be a small proportion of those present in the gut and many apparently novel species, genera and possibly families have been identified from 16S rRNA gene clone libraries and DNA sequence analysis7-9. Interestingly, the dominant methanogens in domestic livestock fall within a single genus, *Methanobrevibacter*, with the majority closely related to *Mbb. ruminantium*, at least according to 16S rRNA gene sequence similarity7-9.

Alternative microbial pathways that ameliorate the generation of methane in gut ecosystems

While it is necessary to remove excess hydrogen from anaerobic fermentation, it is not necessary that this occurs through the process of methanogenesis. A variety of alternative biochemical pathways do exist and in some circumstances these can be competitive with methanogenesis. Bacteria that reduce sulphates and nitrates, e.g. *Desulfovibrio* spp. and *Bacillus benzoevorans*5, 10, consume hydrogen in the process and therefore reduce the availability of hydrogen for methanogenesis. Changing the species composition in the gut to favour those that produce propionate (which consumes hydrogen) as opposed to acetate (which yields hydrogen), as commonly occurs with feeding grain instead of pasture to ruminants, will also decrease methane emission11. However, the amount of hydrogen that it is possible to divert into these pathways is limited and unlikely to displace methanogenesis; however, there is another mechanism that does, in some circumstances, displace methanogenesis, namely reductive acetogenesis.

Reductive acetogenesis is mediated by bacteria and has been suggested as an alternative pathway for the disposal of hydrogen to methanogenesis12-14. With reductive acetogenesis, CO\textsubscript{2} is also reduced and hydrogen consumed, but instead of CH\textsubscript{4} being formed, acetate is formed and acetate can be used by the host animal as a source of energy. Reductive acetogenesis is undertaken by a broad range of genetically diverse bacteria12, 15 and is the dominate pathway for the removal of hydrogen in a number of fermentative gut ecosystems15-18.

Wood eating termites are able to generate 33% of their total energy requirements from acetate produced by reductive acetogenesis in the hindgut15. Kangaroos ferment plant material in an enlarged forestomach prior to gastric digestion in a manner analogous to ruminants. Unlike ruminants, kangaroos emit very little methane17. Furthermore, PCR assays targeting archaea or a functional gene in the reductive acetogenesis pathway demonstrated that methanogens were below detection in eight kangaroos but all appeared to harbour populations of reductive acetogens18. In humans, rats and pigs12, reductive acetogens and methanogens are present and co-exist, although reductive acetogenesis tends to dominate. Reductive acetogenesis also often out-competes methanogenesis in the ostrich hindgut (enlarged to allow for the fermentation of plant material). In the ostrich, reductive acetogenesis yields 25% of total acetate produced, which represents 7% of the bird’s maintenance energy requirements16.

Reductive acetogens are present in the rumen and the wide range of population densities reported (<105 to >108 per mL of rumen contents12, 19) indicates that, under some circumstances, reductive acetogenesis may be more significant in ruminants than currently accepted.

Why methanogenesis tends to dominate in the rumen and is out-competed by reductive acetogenesis in other related ecosystems is poorly understood. However, the interest in reducing greenhouse gas emissions from domestic livestock has led to considerable interest in trying to increase reductive acetogenesis at the expense of methanogenesis. Some limited success has been achieved, mainly in increasing existing ruminal acetogen populations; this has been more pronounced in studies where methanogenesis has been inhibited.

- Lopez *et al.*20 added acetogenic bacteria to *in vitro* incubations of rumen contents with and without chemical inhibition of methanogenesis. When methanogenesis was inhibited, acetate increased and hydrogen accumulation decreased.
- With regular administration, *Ruminococcus productus* can compete with methanogens *in vitro*21.
- Cell-free culture fluid from *Lactobacillus plantarum* 80, incubated with rumen contents, increased volatile fatty acid production (30%) and decreased CH\textsubscript{4} (15%). The effects were enhanced by the addition of *R. productus* and a reduction in methanogenesis by 80% was achieved *in vivo* but unfortunately this impact was short-lived22.

![Autofluorescence from Methanobrevibacter sp.](Image)
Unfortunately, all current efforts to increase the role of reductive acetogens in the rumen have concentrated on boosting existing populations in ecosystems where these populations are naturally out-competed by methanogens. To date, no studies have reported whether reductive acetogens from ecosystems where they naturally out-compete methanogens could play a role in reducing emissions from cattle or sheep, nor of the mechanisms that allow these reductive acetogens to become the dominant hydrogen consumers in their natural environment. We are currently investigating reductive acetogens from the forestomach of red and grey kangaroos to understand the mechanisms that enable them to out-compete methanogens with a view to determining whether they have the attributes required to colonise the rumen of cattle and sheep and reduce methane emissions.

References

From early 2009, Athol Klève is Associate Professor in Animal Nutrition at the University of Queensland. This is a joint appointment with Queensland Primary Industries and Fisheries where he heads the Rumen Ecology Unit, as he has done over the past sixteen years.

Previous issues of Microbiology Australia

There is open access from www.theasm.com.au for all issues except for the previous 12 months which are restricted to ASM members