Quantitative detection of pathogens in roof-harvested rainwater

Roof-harvested rainwater is an alternative water source. Though generally considered acceptable for potable use, the presence of pathogens has been reported in research literature 1. Various zoonotic pathogens are present in faeces of animals that have access to the roof and, following rain events, pathogens may be transported to rainwater tanks via roof runoff. The microbiological quality of water is traditionally assessed by enumerating faecal indicators such as *Escherichia coli* and enterococci 2. Significant limitations in using faecal indicators include their poor correlation with pathogens and faecal indicator concentrations cannot be used to assess public health risk when compared to the direct monitoring of pathogens 3. Polymerase chain reaction (PCR)-based techniques enable rapid and direct detection/quantification of pathogens in water that are otherwise laborious to culture using traditional microbiological methods.

In this study, the microbiological quality of roof-harvested rainwater was assessed by enumerating faecal indicators and detecting zoonotic pathogens in samples from rainwater tanks. The significance of this study stems from the fact that, instead of measuring faecal indicators, pathogens that are capable of causing illness were directly measured using quantitative PCR (qPCR) methods. The pathogen concentration data will be used to perform quantitative microbial risk assessment (QMRA). This work forms part of the development of a ‘toolbox’ of methodologies using qPCR-based methods which can be used to detect and quantify more than 35 microorganisms commonly found in water [more information on the qPCR ‘toolbox’ can be obtained from the corresponding author].

A total of 84 rainwater samples were collected from 66 residential houses in Brisbane and Gold Coast regions. Membrane filtration method was used for *E. coli* and enterococci enumeration. For PCR/qPCR analysis, *Aeromonas hydrophila* lip gene, *Campylobacter jejuni* mapA gene, *Campylobacter coli* ceuE gene, *E. coli* O157 LPS, VT1, VT2 genes, *L. pneumophila* mip gene, *Salmonella* invA and spvC genes, *G. lamblia* β-giradin gene and *Cryptosporidium parvum* Cryptosporidium oocyst wall protein (COWP) gene were selected. Most of these genes were selected based on their virulent properties. In addition, priority was given to those genes which are single copy genes (where possible) so that gene copy numbers could be directly converted to cell counts. DNA extraction from rainwater samples, PCR amplification, the standards for qPCR and the primers used for this study are described elsewhere 4. For each target pathogen, PCR reproducibility, limit of detection, detection efficiency and PCR inhibitory effects were evaluated.

For the samples tested, 57 (65%) were positive for *E. coli*. The concentrations were: 18 (20%) between 1-10 CFU/100ml, 16 (18%) between 11-100 CFU/100ml, 17 (19%) between 101-1000 CFU/100ml, and 6 (7%) had >1001 CFU/100ml. For the 84 samples, 72 (82%) were positive for enterococci. The concentrations were: 16 (18%) between 1-10 CFU/100ml, 27 (31%) between 11-100 CFU/100ml, 20 (23%) between 101-1000 CFU/100ml, and 9 (10%) had >1001 CFU/100ml. The PCR positive results for potential pathogens are shown in Table 1.
Quantitative PCR assays were performed on selected pathogens considering their prevalence and infectious dose. Though *C. jejuni* mapA gene was detected in one sample, the concentration was below qPCR detection limit. *L. pneumophila*, *Salmonella*, and *Giardia lamblia* were detected in several samples (Table 1). *L. pneumophila* mip and *Salmonella* invA are single copy genes and were converted to cell numbers (i.e. 1 gene copy = 1 cell). *G. lamblia* β-giradin gene copy numbers were converted to cysts (16 gene copies = 1 cyst). Binary logistic regressions were also performed to identify the correlations between the concentrations of faecal indicator bacteria and the presence/absence of potential target pathogens (Table 2). The presence/absence of the potential pathogens did not correlate with any of the indicator bacteria concentrations.

Roof-harvested rainwater can be of poor microbiological quality.

Table 1. PCR positive results for potential pathogens.

<table>
<thead>
<tr>
<th>Gene of target pathogen</th>
<th>PCR positive results/ No. samples tested (% of sample positive)</th>
<th>Range of gene copies/100ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hydrophila lip gene</td>
<td>7/84 (8.3)</td>
<td>Not tested</td>
</tr>
<tr>
<td>Campylobacter coli ceuE gene</td>
<td>10/27 (37)</td>
<td>Not tested</td>
</tr>
<tr>
<td>C. jejuni mapA gene</td>
<td>1/84 (1.1)</td>
<td>Below qPCR detection limit</td>
</tr>
<tr>
<td>E. coli O157 LPS gene</td>
<td>0/84 (0)</td>
<td>Not tested</td>
</tr>
<tr>
<td>E. coli VT1 gene</td>
<td>0/84 (0)</td>
<td>Not tested</td>
</tr>
<tr>
<td>E. coli VT2 gene</td>
<td>0/84 (0)</td>
<td>Not tested</td>
</tr>
<tr>
<td>L. pneumophila mip gene</td>
<td>8/84 (9.5)</td>
<td>6-17</td>
</tr>
<tr>
<td>Salmonella invA gene</td>
<td>17/84 (20)</td>
<td>6.6-38</td>
</tr>
<tr>
<td>Salmonella spvC gene</td>
<td>0/27 (0)</td>
<td>Not tested</td>
</tr>
<tr>
<td>G. lamblia β-giradin gene</td>
<td>15/84 (18)</td>
<td>9-51</td>
</tr>
<tr>
<td>Cryptosporidium parvum COWP gene</td>
<td>0/84 (0)</td>
<td>Not tested</td>
</tr>
</tbody>
</table>

Table 2. The relationship between faecal indicators and the presence/absence of selected pathogens in samples from rainwater tanks.

<table>
<thead>
<tr>
<th>Indicators vs. pathogenic microorganisms</th>
<th>Nagelkerke’s R square*</th>
<th>P-valueΔ</th>
<th>Odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli vs. A. hydrophila</td>
<td>0.055</td>
<td>0.460</td>
<td>1.00</td>
</tr>
<tr>
<td>E. coli vs. C. jejuni</td>
<td>0.008</td>
<td>0.775</td>
<td>1.00</td>
</tr>
<tr>
<td>E. coli vs. L. pneumophila</td>
<td>0.006</td>
<td>0.640</td>
<td>1.00</td>
</tr>
<tr>
<td>E. coli vs. Salmonella</td>
<td>0.048</td>
<td>0.198</td>
<td>1.00</td>
</tr>
<tr>
<td>E. coli vs. G. lamblia</td>
<td>0.019</td>
<td>0.484</td>
<td>1.00</td>
</tr>
<tr>
<td>Ent vs. A. hydrophila</td>
<td>0.006</td>
<td>0.700</td>
<td>1.00</td>
</tr>
<tr>
<td>Ent vs. C. jejuni</td>
<td>0.001</td>
<td>0.943</td>
<td>1.00</td>
</tr>
<tr>
<td>Ent vs. L. pneumophila</td>
<td>0.007</td>
<td>0.555</td>
<td>1.00</td>
</tr>
<tr>
<td>Ent vs. Salmonella</td>
<td>0.016</td>
<td>0.388</td>
<td>1.00</td>
</tr>
<tr>
<td>Ent vs. G. lamblia</td>
<td>0.001</td>
<td>0.928</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* Nagelkerke’s R square, which can range from 0.0-1.0, denotes the effect size (the strength of the relationship); stronger associations have values closer to 1.0.

Δ P-value for the model chi square was <0.05 and the confidence interval for the odds ratio did not include 1.0.

Greater odds ratios indicate a higher probability of change in the dependent variable with a change in the independent variable.
The presence of one or more pathogenic microorganisms along with faecal indicators represents a health risk to users. The pathogens had a poor correlation with faecal indicators. Currently we are performing QMRA using Monte Carlo analysis to determine the likely numbers of infections resulting from these exposures. These outcomes in terms of the impact of using roof-harvested rainwater on the disease burden of South East Queensland region of Australia will be interpreted.

Acknowledgements

This study was funded by Queensland Department of Natural Resources and Water. This was a collaborative project between DNRW and Queensland University of Technology.

References

Dr Warish Ahmed is a water microbiologist at the Queensland Department of Natural Resources and Water and Queensland University of Technology. His area of expertise includes faecal pollution tracking and detection and quantification of pathogens in environmental waters.

Ashantha Goonetilleke is a professor in water/environmental engineering at Queensland University of Technology.

Ted Gardner is a principal scientist with the Queensland Department of Natural Resources and Water and an adjunct professor at Queensland University of Technology.

ASM Awards

Please note that deadlines for nominations and applications for many ASM Awards are approaching.

For many deadlines are March 31.

Go to www.theasm.com.au for further details.

Awards include:

Frank Fenner Research Award
Merck, Sharp and Dohme
The bioMérieux Identifying Resistance Award
David White Excellence in Teaching Award
ASM Teachers’ Travel Award
ASM Distinguished Service Award
ASM Foundation Travel Grant
ASM Research Trust Fellowship
BD Awards
The Merck Sharp and Dohme ASM Mycology Award
The Oxoid ASM Culture Media Award
Vic Sherman Student Prize
The Roche Molecular Diagnostic Award
The Pfizer ASM Mycology Encouragement Award
Honorary Life Membership

ASM NEW MEMBERS

ACT
Chong Wei Ong

New South Wales
Katrina Bosward
Tatiana Zubkova
Thao Tu
Rachael Keefe
Brian Banza
Nestor Solis
Hong Ly
Edita Rokov
Eva Rubazewicz
Linda Chau
Tristrom Winsley

Sarah Sherwood
Nicla Varnier
Wendy Sun
Milena Radovanovic
Fatma Ba Alawi

Queensland
Chaofeng Lin
James Fraser
Ana Cano-Gomez
Simone Fisher
Ben Scheeres
Sabina Kopinski
Nicole Ertl
Farhana Sharmin

Hashim Idris Dolib Elsayed

South Australia
Irene Chan
Thomas Tu
Helen Rammers

Western Australia
Jennifer Hu
Lindsay Learmonth
Gemma Cassidy
Melissa Waters
Geoffrey Quesnel
Joanna Lee
Mohammed Benghezal
Alma Fuluriija

Victoria
Melissa de Frutos
Sarah Schroeder
Paul Selleck
Nick Samaras
Drikus Du Plooy
Rhizanthela Ramos
Esther Marton

Singapore
Tien Tze Lim