A mobile laboratory for real time analysis during forensic operations

The Australian Federal Police (AFP) have developed the Mobilab, a mobile forensics laboratory, to provide on-site support to Australian Capital Territory (ACT), national and international investigations.

The AFP forensic division provides support to all AFP operational areas, including policing services in the ATC (and Jervis Bay), the major Australian airports, embassies and consulates within Australia, most Australian embassies, and the Christmas, Cocos and Norfolk Islands. As the agency that enforces Commonwealth law, the AFP is regularly involved in the investigation of national and transnational crimes such as acts of terrorism, people smuggling, electronic crimes and illegal drug importations. The AFP also provides police and forensic assistance to countries in South East Asia, Australasia and the Pacific.

Figure 1. External view of the Mobilab.
With such a broad territory to cover, AFP forensics has a fundamental need to be mobile. For many years this capacity has been provided by the use of portable detection and analysis equipment in temporary laboratories established at or near the site of an incident. The development of the mobile laboratory complements this capability by providing a safe, secure and clean laboratory that can travel by road, rail or air to anywhere in the world.

In essence, the Mobilab is a large caravan fitted with two independent compartments (Figures 1-6). The compartments can be accessed from the outside by external air tight doors and between compartments with an internal air tight door. The laboratory is connected directly to the power grid by shore ports at the front of the van. When shore power is not available, two on-board diesel generators supply all power needs for equipment, lighting and air-conditioning systems. The fuel tank holds sufficient diesel to power the laboratory for a minimum of 3 days. The van also has a bank of batteries to power the fridge and freezer during transport. Town water can be connected directly to the caravan through a standard hose fitting and, when needed, an on-board water tank housed below the sink holds about 100 litres of water. An identical tank holds waste water for decontamination prior to disposal.

The forward compartment is primarily designed for the chemical analysis of samples while the rear compartment is fitted for biological analysis. Both cabins are fitted with independent recycled air conditioning units and both have high efficiency particulate air (HEPA) filtered intake and exhaust ducts with variable speed fans. These allow the creation of positive or negative atmospheric gradients between the cabins and the environment. This allows the cabins to establish the negative atmospheric pressures of a PC3 laboratory for microbiological and biological analysis. For other investigations such as those for trace levels of explosives, the cabins can be used as positively pressurised clean rooms.

The rear compartment houses a large Class III biosafety cabinet (glove box) which has a HEPA filtered intake duct and a series of two HEPA filters and a TEDA carbon filter on the exhaust duct. The exhaust duct is fitted with a variable speed fan which allows the user to regulate the negative pressure within the glove box. High negative pressures are used to capture the off-gas from volatile liquids such as sarin, whereas low negative pressures are used to minimise the disturbance of powders. This allows both biological and chemical specimens to be examined safely.

The rear compartment also houses a Class II biosafety cabinet, a sink and a small amount of bench and storage space. The larger forward compartment is fitted with significantly more bench and

Figure 2. View of the rear cabin looking toward the rear of the van, showing the sink, bench and Class II biosafety cabinet.
Figure 3. View of the rear cabin looking toward the rear of the van, showing the glove box.

Figure 4. View of the forward cabin looking toward the rear of the van, showing the microscope bench and the door to the rear cabin.

Figure 5. View of the forward cabin looking toward the rear of the van, showing the gas chromatograph and mass spectrometer.
Dr Paul Roffey is a forensic microbiologist and Biological Warfare Advisor with the Australian Federal Police and an Adjunct Associate Professor with the University of Canberra. He has close to 20 years’ experience as a forensic scientist. His areas of expertise are in forensic DNA analysis and microbiology.

Keith Norman is a forensic chemist and Chemical Warfare Advisor with the Australian Federal Police. He has extensive experience in forensic chemistry and crime scene analysis and has particular expertise in clandestine laboratory investigation.

David Royds is the Coordinator of Forensic Counter Terrorism with the Australian Federal Police and the former President of the ACT Branch of the Australian and New Zealand Forensic Science Society. David has nearly 30 years’ experience in the forensic sciences as a crime scene analyst and forensic chemist. His particular area of expertise is chemical trace evidence.