In February 2003, a small group of scientists and clinicians met in Sydney to map out how Australia could best respond if a case of smallpox occurred in Australia. The day was interrupted by a teleconference on the two deaths in Hong Kong of family members who had been in South China. One was confirmed to have avian influenza, H5N1, the same virus which had caused 18 cases and six deaths in Hong Kong in 1997.

After the teleconference, the group mused as to what was going to be the most threat to the world – smallpox, avian flu or was it perhaps the strange pneumonia that was killing people in Southern China. In 2003 it turned out to be the latter, which became known as SARS, Severe Acute Respiratory Syndrome.

The world went into battle mode against the SARS corona virus, and it seemed as if avian influenza had dropped out of sight. In January 2004, almost 6 months since the spread of SARS had been halted and disease controllers around the world were beginning to relax, laboratory tests confirmed the presence of H5N1 in human cases of severe respiratory disease in Vietnam. Vietnam, Korea, Japan and Thailand reported outbreaks of H5N1 in poultry. In late January, Thailand began to report human cases. In the ensuing months, Cambodia, Laos, Indonesia and China also reported detection of H5N1 in poultry.

The incident room in the Australian Department of Health and Ageing (DoHA) was still in operation following the SARS outbreak. The team searched the web for reports or rumours of respiratory illness anywhere in the world, examining the epidemiological detail and analysing the threat – this time the threat of pandemic influenza.

The Australian government was quick to react to the warnings and provided in the 2004 budget funds to purchase sufficient influenza antivirals for treatment courses for 4 million Australians or sufficient for prophylaxis of 1 million workers for 6 weeks in the event of a pandemic. Funds were designated to upgrade the incident room and increased resources were assigned for public laboratories. Over $10 million was provided to enhance surveillance technology, enabling online reporting and outbreak control. Highly Pathogenic Avian Influenza Affecting Humans (HPAIAH) was proclaimed a quarantinable disease on 23 March 2004.

The Australian Action Plan for Pandemic Influenza had been endorsed in 2003. This plan laid out basic actions for each level of alert and stages of the pandemic and was aligned to the World Health Organization plan. The plan was a guide for States and Territories to make more detailed plans. However, the plan did not take into account the unprecedented situation of widespread avian outbreaks; clarity on antiviral and quarantine strategy was also required.

The strategies put forward by NIPAC had to be considered by the Communicable Disease Network of Australia (CDNA), by the Public Health Laboratory Network (PHLN) – the national operative networks of communicable disease control – and by the Australian Health Disaster Management and Policy Committee (AHDMPC) – an overarching national policy committee comprised of disaster experts and the chief health officers from each jurisdiction and chaired by Ms Mary Murnane, the Deputy Secretary of the DoHA.

After a lull in the early northern summer of 2004, poultry outbreaks and human cases began to recur in August in Vietnam and Thailand. A human fatality reported in Thailand was thought likely to be a result of human to human transmission. An outbreak of H5N1 in a Thailand zoo killed 147 tigers. In April, China reported widespread deaths in different species of wild birds at Qinghai Lake in central China. Cambodia, in February 2005, reported its first human case. International concern increased.

The Australian government moved to secure a pandemic vaccine supply. Two companies, CSL Ltd in Australia and Sanofi Pasteur based in France, were awarded 3 year contracts to supply seasonal influenza vaccine – the contracts are tied to capacity

Dr Moira McKinnon
Office of Health Protection
Australian Department of Health and Ageing
E-mail: moira.mckinnon@health.gov.au

Preparing for the influenza pandemic: the government response
Recent clinical trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient. Trials with seasonal influenza have shown a reduction in the duration of illness in treatment of about 1 day, reduction in minor complications and a reduction in viral shedding but their efficacy in treatment in preventing severe complications or mortality is currently insufficient.
planning for the event of a pandemic and the likely 30-50% absenteeism. The major decisions in the event of a pandemic would be made across the whole of government. A governance process to allow this to occur quickly has been set up.

In December 2005 the government decided to further increase domestic resources toward pandemic influenza preparation. Funding was granted for a range of initiatives – purchasing another 4 million courses of antivirals (sufficient to treat 8 million of Australia’s population), stockpiling of a suitable vaccine or vaccine antigen of 2 million doses, providing additional equipment such as masks, needles, syringes and ventilators for the National Medicines Stockpile, implementing an extensive professional and community education programme, improving surveillance in primary care and in hospitals, and improving central resources by setting up an Office of Health Protection for Australia.

January 2006 has seen the spread of H5N1 across the base of Russia to Turkey. Two deaths in a family in Turkey of H5N1 resulted in the wide scale testing of humans and culling of poultry. The number of cases in Turkey has risen more rapidly than in any other country and stands at 20 (not yet notified by WHO but laboratory confirmed). It is not clear why so many and why all at once. Testing has also shown H5N1 in two asymptomatic children in Turkey. Recent research in Vietnam links mild-moderate influenza illness with contact with infected poultry.

The current count (15 January 2006) of WHO notifications is 147 cases with 78 fatalities. Experts and researchers around the world are working hard to make sense of this virus, to try and understand not only the prevalence of infection in humans but also why it hasn’t jumped and if it will ever jump to become transmissible in humans. Maybe it won’t, but history leads us to believe otherwise.

* A modified Susceptible Exposed Infectious Removed (SEIR) model, provided by modellers at the Australian National University, and the

Centers for Disease Control Meltzer models (available on the CDC website) were used by the incident room team to model pandemic spread and value of intervention at the border.

References

Bio2ic offers services in:
- Advice on design of PC2, PC3, “PC3+” and PC4 containment labs
- Training in biosafety and biocontainment practices
- Assistance in preparation of biosafety manuals
- Advice and safety inspections of PC2, PC3 AND PC4 labs

Visit www.bio2ic.com for details of our services and training courses or e-mail: admin@bio2ic.com